990 research outputs found

    Gravitational wave background from rotating neutron stars

    Full text link
    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars and gravitars) is investigated. A formula for \Omega(f) (commonly used to quantify the background) is derived, properly taking into account the time evolution of the systems since their formation until the present day. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background can be rejected. However, other models do predict the detection of the background by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which produce a stronger emission of gravitational radiation. Considering the most optimistic (in terms of the detection of gravitational waves) of these models, an upper limit for the background produced by magnetars is obtained; it could be detected by ET, but not by BBO or DECIGO.Comment: 25 pages, 15 figure

    Pulsational Analysis of the Cores of Massive Stars and its Relevance to Pulsar Kicks

    Full text link
    The mechanism responsible for the natal kicks of neutron stars continues to be a challenging problem. Indeed, many mechanisms have been suggested, and one hydrodynamic mechanism may require large initial asymmetries in the cores of supernova progenitor stars. Goldreich, Lai, & Sahrling (1997) suggested that unstable g-modes trapped in the iron (Fe) core by the convective burning layers and excited by the ϵ\epsilon-mechanism may provide the requisite asymmetries. We perform a modal analysis of the last minutes before collapse of published core structures and derive eigenfrequencies and eigenfunctions, including the nonadiabatic effects of growth by nuclear burning and decay by both neutrino and acoustic losses. In general, we find two types of g-modes: inner-core g-modes, which are stabilized by neutrino losses and outer-core g-modes which are trapped near the burning shells and can be unstable. Without exception, we find at least one unstable g-mode for each progenitor in the entire mass range we consider, 11 M_{\sun} to 40 M_{\sun}. More importantly, we find that the timescales for growth and decay are an order of magnitude or more longer than the time until the commencement of core collapse. We conclude that the ϵ\epsilon-mechanism may not have enough time to significantly amplify core g-modes prior to collapse.Comment: 32 pages including 12 color figures and 2 tables, submitted to Ap

    Is pulsar B0656+14 a very nearby RRAT source?

    Get PDF
    The recently discovered RRAT sources are characterized by very bright radio bursts which, while being periodically related, occur infrequently. We find bursts with the same characteristics for the known pulsar B0656+14. These bursts represent pulses from the bright end of an extended smooth pulse-energy distribution and are shown to be unlike giant pulses, giant micropulses or the pulses of normal pulsars. The extreme peak-fluxes of the brightest of these pulses indicates that PSR B0656+14, were it not so near, could only have been discovered as an RRAT source. Longer observations of the RRATs may reveal that they, like PSR B0656+14, emit weaker emission in addition to the bursts.Comment: 4 pages, 4 figures, accepted by ApJ

    Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries

    Full text link
    We report results from the initial stage of a long-term pulsar survey of the Galactic plane using the Arecibo L-band Feed Array (ALFA), a seven-beam receiver operating at 1.4 GHz with 0.3 GHz bandwidth. The search targets Galactic latitudes |b| < 5 deg in the longitude ranges 32 deg < l < 77 deg and 168 deg < l < 77 deg. Data discussed here were collected over a 100 MHz passband centered on 1.42 GHz using a spectrometer that recorded 256 channels every 64 microsec. In a preliminary, standard period-DM analysis, we have detected 29 previously known pulsars and discovered 11 new ones. One of these, with a period of 69 ms and a low characteristic age of 82 kyr, is a plausible candidate for association with the unidentified EGRET source 3EG J1928+1733. Another is a non-recycled pulsar in a relativistic binary with orbital period of 3.98 hr. We also search the data for isolated dispersed pulses, a technique that yielded discovery of an extremely sporadic radio emitter with a spin period of 1.2 s. Simulations we have carried out indicate that about 1000 new pulsars will be found in the ALFA survey. In addition to providing a large sample for use in population analyses and for probing the magnetoionic interstellar medium, the survey maximizes the chances of finding rapidly spinning millisecond pulsars and pulsars in compact binary systems. Our search algorithms will exploit the multiple data streams from ALFA to discriminate between radio frequency interference and celestial signals, including pulsars and possibly new classes of transient radio sources.Comment: 10 pp, 9 figures, accepted by the Astrophysical Journa

    Pulsar Parallaxes at 5 GHz with the Very Long Baseline Array

    Full text link
    We present the first pulsar parallaxes measured with phase-referenced pulsar VLBI observations at 5 GHz. Due to the steep spectra of pulsars, previous astrometric measurements have been at lower frequencies. However, the strongest pulsars can be observed at 5 GHz, offering the benefit of lower combined ionospheric and tropospheric phase errors, which usually limit VLBI astrometric accuracy. The pulsars B0329+54, B0355+54 and B1929+10 were observed for 7 epochs spread evenly over 2 years. For B0329+54, large systematic errors lead to only an upper limit on the parallax (pi < 1.5 mas). A new proper motion and parallax were measured for B0355+54 (pi = 0.91 +- 0.16 mas), implying a distance of 1.04+0.21-0.16 kpc and a transverse velocity of 61+12-9 km/s. The parallax and proper motion for B1929+10 were significantly improved (pi = 2.77 +- 0.07 mas), yielding a distance of 361+10-8 pc and a transverse velocity of 177+4-5 km/s. We demonstrate that the astrometric errors are correlated with the angular separation between the phase reference calibrator and the target source, with significantly lower errors at 5 GHz compared to 1.6 GHz. Finally, based on our new distance determinations for B1929+10 and B0355+54, we derive or constrain the luminosities of each pulsar at high energies. We show that, for thermal emission models, the emitting area for X-rays from PSR B1929+10 is roughly consistent with the canonical size for a heated polar cap, and that the conversion of spin-down power to gamma-ray luminosity in B0355+54 must be low. The new proper motion for B1929+10 also implies that its progenitor is unlikely to have been the binary companion of the runaway O-star zeta-Ophiuchi.Comment: 8 pages, including 3 figures and 3 tables; emulateapj; ApJ submitte

    Initial data for binary neutron stars with arbitrary spins

    Full text link
    In general neutron stars in binaries are spinning. Due to the existence of millisecond pulsars we know that these spins can be substantial. We argue that spins with periods on the order a few dozen milliseconds could influence the late inspiral and merger dynamics. Thus numerical simulations of the last few orbits and the merger should start from initial conditions that allow for arbitrary spins. We discuss quasi-equilibrium approximations one can make in the construction of binary neutron star initial data with spins. Using these approximations we are able to derive two new matter equations. As in the case of irrotational neutron star binaries one of these equations is algebraic and the other elliptic. If these new matter equations are solved together with the equations for the metric variables following the Wilson-Mathews or conformal thin sandwich approach one can construct neutron star initial data. The spin of each star is described by a rotational velocity that can be chosen freely so that one can create stars in arbitrary rotation states. Our new matter equations reduce to the well known limits of both corotating and irrotational neutron star binaries.Comment: 9 page

    The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries

    Full text link
    We have embarked on a survey for pulsars and fast transients using the 13-beam Multibeam receiver on the Parkes radio telescope. Installation of a digital backend allows us to record 400 MHz of bandwidth for each beam, split into 1024 channels and sampled every 64 us. Limits of the receiver package restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of eight improvement in frequency resolution over previous multibeam surveys allows us to probe deeper into the Galactic plane for short duration signals such as the pulses from millisecond pulsars. We plan to survey the entire southern sky in 42641 pointings, split into low, mid and high Galactic latitude regions, with integration times of 4200, 540 and 270 s respectively. Simulations suggest that we will discover 400 pulsars, of which 75 will be millisecond pulsars. With ~30% of the mid-latitude survey complete, we have re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which are millisecond pulsars. The newly discovered millisecond pulsars tend to have larger dispersion measures than those discovered in previous surveys, as expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA

    Discovery of 10 pulsars in an Arecibo drift-scan survey

    Full text link
    We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 square degrees of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity (e = 0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607 which imply that its absolute visual magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    X-ray Observations of the Compact Source in CTA 1

    Full text link
    The point source RX J0007.0+7302, at the center of supernova remnant CTA 1, was studied using the X-Ray Multi-mirror Mission. The X-ray spectrum of the source is consistent with a neutron star interpretation, and is well described by a power law with the addition of a soft thermal component that may correspond to emission from hot polar cap regions or to cooling emission from a light element atmosphere over the entire star. There is evidence of extended emission on small spatial scales which may correspond to structure in the underlying synchrotron nebula. No pulsations are observed. Extrapolation of the nonthermal spectrum of RX J0007.0+7302 to gamma-ray energies yields a flux consistent with that of EGRET source 3EG J0010+7309, supporting the proposition that there is a gamma-ray emitting pulsar at the center of CTA 1. Observations of the outer regions of CTA 1 with the Advanced Satellite for Cosmology and Astrophysics confirm earlier detections of thermal emission from the remnant and show that the synchrotron nebula extends to the outermost reaches of the SNR.Comment: 5 pages, including 4 postscript figs.LaTex. Accepted for publication by Ap
    corecore