85 research outputs found

    Sleeping on a problem: the impact of sleep disturbance on intensive care patients - a clinical review

    Get PDF
    Sleep disturbance is commonly encountered amongst intensive care patients and has significant psychophysiological effects, which protract recovery and increases mortality. Bio-physiological monitoring of intensive care patients reveal alterations in sleep architecture, with reduced sleep quality and continuity. The etiological causes of sleep disturbance are considered to be multifactorial, although environmental stressors namely, noise, light and clinical care interactions have been frequently cited in both subjective and objective studies. As a result, interventions are targeted towards modifiable factors to ameliorate their impact. This paper reviews normal sleep physiology and the impact that sleep disturbance has on patient psychophysiological recovery, and the contribution that the clinical environment has on intensive care patients' sleep

    Sleep monitoring techniques within Intensive Care

    Get PDF
    Sleep is an essential biological function that provides important restorative psycho-physiological processes. Patients in the Intensive Care Unit are highly vulnerable to sleep disturbance which can protract their recovery. Despite sleep disturbance being widely acknowledged amongst this patient cohort, the ability to make significant changes to minimise the burden of sleep deprivation remains a challenge. This is further compounded by the difficulties faced by clinicians to identify and implement accurate and feasible sleep monitoring techniques in the intensive care. Whilst objective, behavioural and subjective methods of sleep assessment exist, all have specific limitations when applied to critically ill patients. In an attempt to illuminate these issues, current sleep monitoring techniques are appraised

    Mitigating intensive care unit noise: Design-led modeling solutions, calculated acoustic outcomes, and cost implications

    Get PDF
    Objectives, Purpose, or Aim: The study aimed to decrease noise levels in the ICU, anticipated to have adverse effects on both patients and staff, by implementing enhancements in acoustic design. Background: Recognizing ICU noise as a significant disruptor of sleep and a potential hindrance to patient recovery, this study was conducted at a 40-bed ICU in Fiona Stanley Hospital in Perth, Australia. Methods: A comprehensive mixed-methods approach was employed, encompassing surveys, site analysis, and acoustic measurements. Survey data highlighted the importance of patient sleep quality, emphasizing the negative impact of noise on work performance, patient connection, and job satisfaction. Room acoustics analysis revealed noise levels ranging from 60 to 90 dB(A) in the presence of patients, surpassing sleep disruption criteria. Results: Utilizing an iterative 3D design modeling process, the study simulated significant acoustic treatment upgrades. The design integrated effective acoustic treatments within patient rooms, aiming to reduce noise levels and minimize transmission to adjacent areas. Rigorous evaluation using industry-standard acoustic software highlights the design’s efficacy in reducing noise transmission in particular. Additionally, cost implications were examined, comparing standard ICU construction with acoustically treated options for new construction and refurbishment projects. Conclusions: This study provides valuable insights into design-based solutions for addressing noise-related challenges in the ICU. While the focus is on improving the acoustic environment by reducing noise levels and minimizing transmission to adjacent areas. It is important to clarify that direct measurements of patient outcomes were not conducted. The potential impact of these solutions on health outcomes, particularly sleep quality, remains a crucial aspect for consideration

    "They can rest at home": An observational study of patients' quality of sleep in an Australian hospital

    Get PDF
    Background: Poor sleep is known to adversely affect hospital patients' recovery and rehabilitation. The aim of the study was to investigate the perceived duration and quality of patient sleep and identify any environmental factors associated with patient-reported poor sleep in hospital. Method: A cross-sectional study was conducted involving 15 clinical units within a 672-bed tertiary-referral hospital in Australia. Semi-structured interviews to determine perceptions of sleep quantity and quality and factors that disturb nocturnal sleep were conducted with patients and nursing staff. Environmental noise, light and temperature were monitored overnight, with concurrent logging of noise sources by observers. Results: Patients reported a mean reduction in hospital sleep duration, compared to home, of 1.8 h (5.3 vs. 7.1 h; p < 0.001). The proportions of patients reporting their sleep quality to be poor/very poor, fair and of good quality were 41.6, 34.2 and 24.2% respectively. Patients reported poorer sleep quality than nurses (p < 0.05). Patients, nurses and observers all reported the main factors associated with poor sleep as clinical care interventions (34.3%) and environmental noise (32.1%). Noise levels in all 15 clinical areas exceeded WHO recommended levels of < 30 dB [A] by 36.7 to 82.6%, with peak noise levels of 51.3 to 103.3 dB (A). Conclusion: Hospital in-patients are exposed to factors which reduce the duration and quality of their sleep. These extrinsic factors are potentially modifiable through behaviour change and reconfiguration of the clinical environment. The findings from this study provided the foundation for a quality improvement project currently underway to improve patients' sleep.This study was provided funding support from the Hospital Foundation and Office of the Chief Nurse

    The nocturnal acoustical intensity of the intensive care environment: An observational study

    Get PDF
    Background: The intensive care unit (ICU) environment exposes patients to noise levels that may result in substantial sleep disruption. There is a need to accurately describe the intensity pattern and source of noise in the ICU in order to develop effective sound abatement strategies. The objectives of this study were to determine nocturnal noise levels and their variability and the related sources of noise within an Australian tertiary ICU. Methods: An observational cross-sectional study was conducted in a 24-bed open-plan ICU. Sound levels were recorded overnight during three nights at 5-s epochs using Extech (SDL 600) sound monitors. Noise sources were concurrently logged by two research assistants. Results: The mean recorded ambient noise level in the ICU was 52.85 decibels (dB) (standard deviation (SD) 5.89), with a maximum noise recording at 98.3 dB (A). All recorded measurements exceeded the WHO recommendations. Noise variability per minute ranged from 9.9 to 44 dB (A), with peak noise levels >70 dB (A) occurring 10 times/hour (SD 11.4). Staff were identified as the most common source accounting for 35% of all noise. Mean noise levels in single-patient rooms compared with open-bed areas were 53.5 vs 53 dB (p = 0.37), respectively. Conclusion: Mean noise levels exceeded those recommended by the WHO resulting in an acoustical intensity of 193 times greater than the recommended and demonstrated a high degree of unpredictable variability, with the primary noise sources coming from staff conversations. The lack of protective effects of single rooms and the contributing effects that staffs have on noise levels are important factors when considering sound abatement strategies.This study was funded by the Canberra Hospital Foundation and the Office of the Chief Nurse, Australian Capital Territory Healt

    Mast Cell Chymase/Mcpt4 Suppresses the Host Immune Response to Plasmodium yoelii, Limits Malaria-Associated Disruption of Intestinal Barrier Integrity and Reduces Parasite Transmission to Anopheles stephensi

    Get PDF
    An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4(-/-)) mice and Mcpt4(+/+) C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4(-/-) mice compared with Mcpt4(+/+) controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4(-/-) mice. Relative to infected Mcpt4(+/+) mice, ileal MC accumulation in Mcpt4(-/-) mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4(+/+) but not Mcpt4(-/-) mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-alpha, IL-12p40 and IL-3 were observed in Mcpt4(-/-) mice, while levels of IL-2, IL-10 and MIP1 beta (CCL4) were increased over the same period in Mcpt4(+/+) mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4(-/-) mice and type-2 response in Mcpt4(+/+) mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4(-/-) parasitemia with TNF-alpha and IFN-gamma, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4(+/+) mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4(-/-) mice compared with infected Mcpt4(+/+) mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-alpha and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility

    Investigating the application of motion accelerometers as a sleep monitoring technique and the clinical burden of the intensive care environment on sleep quality: study protocol for a prospective observational study in Australia

    Get PDF
    Introduction: Sleep is a state of quiescence that facilitates the significant restorative processes that enhance individuals’ physiological and psychological well-being. Patients admitted to the intensive care unit (ICU) experience substantial sleep disturbance. Despite the biological importance of sleep, sleep monitoring does not form part of standard clinical care for critically ill patients. There exists an unmet need to assess the feasibility and accuracy of a range of sleep assessment techniques that have the potential to allow widespread implementation of sleep monitoring in the ICU. Key measures: The coprimary outcome measures of this study are to: determine the accuracy and feasibility of motion accelerometer monitoring (ie, actigraphy) and subjective assessments of sleep (nursing-based observations and patient self-reports) to the gold standard of sleep monitoring (ie, polysomnography) in evaluating sleep continuity and disturbance. The secondary outcome measures of the study will include: (1) the association between sleep disturbance and environmental factors (eg, noise, light and clinical interactions) and (2) to describe the sleep architecture of intensive care patients. Methods and analysis: A prospective, single centre observational design with a within subjects’ assessment of sleep monitoring techniques. The sample will comprise 80 adults (aged 18 years or more) inclusive of ventilated and non-ventilated patients, admitted to a tertiary ICU with a Richmond Agitation-Sedation Scale score between +2 (agitated) and −3 (moderate sedation) and an anticipated length of stay >24 hours. Patients’ sleep quality, total sleep time and sleep fragmentations will be continuously monitored for 24 hours using polysomnography and actigraphy. Behavioural assessments (nursing observations) and patients’ self-reports of sleep quality will be assessed during the 24-hour period using the Richards-Campbell Sleep Questionnaire, subjective sleepiness evaluated via the Karolinska Sleepiness Scale, along with a prehospital discharge survey regarding patients’ perception of sleep quality and disturbing factors using the Little Sleep Questionnaire will be undertaken. Associations between sleep disturbance, noise and light levels, and the frequency of clinical interactions will also be investigated. Sound and luminance levels will be recorded at 1 s epochs via Extech SDL600 and SDL400 monitoring devices. Clinical interactions will be logged via the electronic patient record system Metavision which documents patient monitoring and clinical care. Ethics and dissemination: The relevant institutions have approved the study protocol and consent procedures. The findings of the study will contribute to the understanding of sleep disturbance, and the ability to implement sleep monitoring methods within ICUs. Understanding the contribution of a clinical environment on sleep disturbance may provide insight into the need to address clinical environmental issues that may positively influence patient outcomes, and could dispel notions that the environment is a primary factor in sleep disturbance. The research findings will be disseminated via presentations at national and international conferences, proceedings and published articles in peer-reviewed journals.This work is supported by the Canberra Hospital Foundation (ACT, Australia), VMedical Australia Pty Ltd and the Intensive Care Foundation Research Grant

    A Study on Copyright Protection of Mobile Applications in Small and Micro Computer Enterprises

    Get PDF
    As more and more small and micro software developers begin to participate in the development process and gradually become the intermediate force of Internet innovation, people are enjoying their life in scientific and technological progress. As a special kind of software, mobile application has the characteristics of lightweight and simple development, which enhances the difficulty of protecting rights and interests of its copyright owners, especially the small and micro software copyright owners. This paper will explore the particularity of its right protection and its solution, and dig out ways to further motivate social innovation
    • …
    corecore