898 research outputs found

    Simulation results for a low energy nuclear recoil yields measurement in liquid xenon using the MiX detector

    Full text link
    Measuring the scintillation and ionization yields of liquid xenon in response to ultra-low energy nuclear recoil events is necessary to increase the sensitivity of liquid xenon experiments to light dark matter. Neutron capture on xenon can be used to produce nuclear recoil events with energies below 0.30.3 keVNR_\text{NR} via the asymmetric emission of Îł\gamma rays during nuclear de-excitation. The feasibility of an ultra-low energy nuclear recoil measurement using neutron capture was investigated for the Michigan Xenon (MiX) detector, a small dual-phase xenon time projection chamber that is optimized for a high scintillation gain. Simulations of the MiX detector, a partial neutron moderator, and a pulsed neutron generator indicate that a population of neutron capture events can be isolated from neutron scattering events. Further, the rate of neutron captures in the MiX detector was optimized by varying the thickness of the partial neutron moderator, neutron pulse width, and neutron pulse frequency.Comment: 7 pages, 5 figures. LIDINE 2022 proceeding

    Long-Range Exciton Diffusion in Two-Dimensional Assemblies of Cesium Lead Bromide Perovskite Nanocrystals

    Get PDF
    F\"orster Resonant Energy Transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as a new optoelectronic design element to transport energy. However, so far nanocrystal (NC) systems supported only diffusion length of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.5 cm2/s diffusivity through an ordered, two-dimensional assembly of cesium lead bromide perovskite nanocrystals (PNC). Exciton diffusion was directly measured via steady-state and time-resolved photoluminescence (PL) microscopy, with physical modeling providing deeper insight into the transport process. This exceptionally efficient exciton transport is facilitated by PNCs high PL quantum yield, large absorption cross-section, and high polarizability, together with minimal energetic and geometric disorder of the assembly. This FRET-mediated exciton diffusion length matches perovskites optical absorption depth, opening the possibility to design new optoelectronic device architectures with improved performances, and providing insight into the high conversion efficiencies of PNC-based optoelectronic devices

    The Longitudinal Polarimeter at HERA

    Get PDF
    The design, construction and operation of a Compton back-scattering laser polarimeter at the HERA storage ring at DESY are described. The device measures the longitudinal polarization of the electron beam between the spin rotators at the HERMES experiment with a fractional systematic uncertainty of 1.6%. A measurement of the beam polarization to an absolute statistical precision of 0.01 requires typically one minute when the device is operated in the multi-photon mode. The polarimeter also measures the polarization of each individual electron bunch to an absolute statistical precision of 0.06 in approximately five minutes. It was found that colliding and non-colliding bunches can have substantially different polarizations. This information is important to the collider experiments H1 and ZEUS for their future longitudinally polarized electron program because those experiments use the colliding bunches only.Comment: 21 pages (Latex), 14 figures (EPS

    Neuronal Agrin Promotes Proliferation of Primary Human Myoblasts in an Age-Dependent Manner

    Get PDF
    Neuronal agrin, a heparan sulphate proteoglycan secreted by the -motor neurons, promotes the formation and maintenance of the neuromuscular junction by binding to Lrp4 and activating muscle-specific kinase (MuSK). Neuronal agrin also promotes myogenesis by enhancing differentiation and maturation of myotubes, but its effect on proliferating human myoblasts, which are often considered to be unresponsive to agrin, remains unclear. Using primary human myoblasts, we determined that neuronal agrin induced transient dephosphorylation of ERK1/2, while c-Abl, STAT3, and focal adhesion kinase were unresponsive. Gene silencing of Lrp4 and MuSK markedly reduced the BrdU incorporation, suggesting the functional importance of the Lrp4/MuSK complex for myoblast proliferation. Acute and chronic treatments with neuronal agrin increased the proliferation of human myoblasts in old donors, but they did not affect the proliferation of myoblasts in young donors. The C-terminal fragment of agrin which lacks the Lrp4-binding site and cannot activate MuSK had a similar age-dependent effect, indicating that the age-dependent signalling pathways activated by neuronal agrin involve the Lrp4/MuSK receptor complex as well as an Lrp4/MuSK-independent pathway which remained unknown. Collectively, our results highlight an age-dependent role for neuronal agrin in promoting the proliferation of human myoblasts
    • …
    corecore