83 research outputs found

    Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators

    Get PDF
    Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix-vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3-3.3 for the silicon-on-insulator chip and in the range 1.3-2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach-Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency

    High-performance end-to-end deep learning IM/DD link using optics-informed neural networks

    Get PDF
    : In this paper, we introduce optics-informed Neural Networks and demonstrate experimentally how they can improve performance of End-to-End deep learning models for IM/DD optical transmission links. Optics-informed or optics-inspired NNs are defined as the type of DL models that rely on linear and/or nonlinear building blocks whose mathematical description stems directly from the respective response of photonic devices, drawing their mathematical framework from neuromorphic photonic hardware developments and properly adapting their DL training algorithms. We investigate the application of an optics-inspired activation function that can be obtained by a semiconductor-based nonlinear optical module and is a variant of the logistic sigmoid, referred to as the Photonic Sigmoid, in End-to-End Deep Learning configurations for fiber communication links. Compared to state-of-the-art ReLU-based configurations used in End-to-End DL fiber link demonstrations, optics-informed models based on the Photonic Sigmoid show improved noise- and chromatic dispersion compensation properties in fiber-optic IM/DD links. An extensive simulation and experimental analysis revealed significant performance benefits for the Photonic Sigmoid NNs that can reach below BER HD FEC limit for fiber lengths up to 42 km, at an effective bit transmission rate of 48 Gb/s

    Results of multilevel containment measures to better protect lung cancer patients from COVID-19. the IEO model

    Get PDF
    A novel coronavirus causing severe acute respiratory syndrome (SARS), named SARS-CoV-2, was identified at the end of 2019. The spread of coronavirus disease 2019 (COVID-19) has progressively expanded from China, involving several countries throughout the world, leading to the classification of the disease as a pandemic by the World Health Organization (WHO). According to published reports, COVID-19 severity and mortality are higher in elderly patients and those with active comorbidities. In particular, lung cancer patients were reported to be at high risk of pulmonary complications related to SARS-CoV2 infection. Therefore, the management of cancer care during the COVID-19 pandemic is a crucial issue, to which national and international oncology organizations have replied with recommendations concerning patients receiving anticancer treatments, delaying follow-up visits and limiting caregiver admission to the hospitals. In this historical moment, medical oncologists are required to consider the possibility to delay active treatment administration based on a case-by-case risk/benefit evaluation. Potential risks associated with COVID-19 infection should be considered, considering tumor histology and natural course, disease setting, clinical conditions, and disease burden, together with the expected benefit, toxicities (e.g., myelosuppression or interstitial lung disease), and response obtained from the planned or ongoing treatment. In this study, we report the results of proactive measures including social media, telemedicine, and telephone triage for screening patients with lung cancer during the COVID-19 outbreak in the European Institute of Oncology (Milan, Italy). Proactive management and containment measures, applied in a structured and daily way, has significantly aided the identification of advance patients with suspected symptoms related to COVID-19, limiting their admission to our cancer center; we have thus been more able to protect other patients from possible contamination and at the same time guarantee to the suspected patients the immediate treatment and evaluation in referral hospitals for COVID-19

    Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models.

    Get PDF
    Radiomics investigates the predictive role of quantitative parameters calculated from radiological images. In oncology, tumour segmentation constitutes a crucial step of the radiomic workflow. Manual segmentation is time-consuming and prone to inter-observer variability. In this study, a state-of-the-art deep-learning network for automatic segmentation (nnU-Net) was applied to computed tomography images of lung tumour patients, and its impact on the performance of survival radiomic models was assessed. In total, 899 patients were included, from two proprietary and one public datasets. Different network architectures (2D, 3D) were trained and tested on different combinations of the datasets. Automatic segmentations were compared to reference manual segmentations performed by physicians using the DICE similarity coefficient. Subsequently, the accuracy of radiomic models for survival classification based on either manual or automatic segmentations were compared, considering both hand-crafted and deep-learning features. The best agreement between automatic and manual contours (DICE = 0.78 ± 0.12) was achieved averaging 2D and 3D predictions and applying customised post-processing. The accuracy of the survival classifier (ranging between 0.65 and 0.78) was not statistically different when using manual versus automatic contours, both with hand-crafted and deep features. These results support the promising role nnU-Net can play in automatic segmentation, accelerating the radiomic workflow without impairing the models' accuracy. Further investigations on different clinical endpoints and populations are encouraged to confirm and generalise these findings

    Impact of image filtering and assessment of volume-confounding effects on CT radiomic features and derived survival models in non-small cell lung cancer

    Full text link
    BACKGROUND No evidence supports the choice of specific imaging filtering methodologies in radiomics. As the volume of the primary tumor is a well-recognized prognosticator, our purpose is to assess how filtering may impact the feature/volume dependency in computed tomography (CT) images of non-small cell lung cancer (NSCLC), and if such impact translates into differences in the performance of survival modeling. The role of lesion volume in model performances was also considered and discussed. METHODS Four-hundred seventeen CT images NSCLC patients were retrieved from the NSCLC-Radiomics public repository. Pre-processing and features extraction were implemented using Pyradiomics v3.0.1. Features showing high correlation with volume across original and filtered images were excluded. Cox proportional hazards (PH) with least absolute shrinkage and selection operator (LASSO) regularization and CatBoost models were built with and without volume, and their concordance (C-) indices were compared using Wilcoxon signed-ranked test. The Mann Whitney U test was used to assess model performances after stratification into two groups based on low- and high-volume lesions. RESULTS Radiomic models significantly outperformed models built on only clinical variables and volume. However, the exclusion/inclusion of volume did not generally alter the performances of radiomic models. Overall, performances were not substantially affected by the choice of either imaging filter (overall C-index 0.539-0.590 for Cox PH and 0.589-0.612 for CatBoost). The separation of patients with high-volume lesions resulted in significantly better performances in 2/10 and 7/10 cases for Cox PH and CatBoost models, respectively. Both low- and high-volume models performed significantly better with the inclusion of radiomic features (P<0.0001), but the improvement was largest in the high-volume group (+10.2% against +8.7% improvement for CatBoost models and +10.0% against +5.4% in Cox PH models). CONCLUSIONS Radiomic features complement well-known prognostic factors such as volume, but their volume-dependency is high and should be managed with vigilance. The informative content of radiomic features may be diminished in small lesion volumes, which could limit the applicability of radiomics in early-stage NSCLC, where tumors tend to be small. Our results also suggest an advantage of CatBoost models over the Cox PH models

    Altered processing of sensory stimuli in patients with migraine

    Get PDF
    Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes
    • …
    corecore