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Abstract: In this paper, we introduce optics-informed Neural Networks and demonstrate
experimentally how they can improve performance of End-to-End deep learning models for
IM/DD optical transmission links. Optics-informed or optics-inspired NNs are defined as the type
of DL models that rely on linear and/or nonlinear building blocks whose mathematical description
stems directly from the respective response of photonic devices, drawing their mathematical
framework from neuromorphic photonic hardware developments and properly adapting their DL
training algorithms. We investigate the application of an optics-inspired activation function that
can be obtained by a semiconductor-based nonlinear optical module and is a variant of the logistic
sigmoid, referred to as the Photonic Sigmoid, in End-to-End Deep Learning configurations for
fiber communication links. Compared to state-of-the-art ReLU-based configurations used in
End-to-End DL fiber link demonstrations, optics-informed models based on the Photonic Sigmoid
show improved noise- and chromatic dispersion compensation properties in fiber-optic IM/DD
links. An extensive simulation and experimental analysis revealed significant performance
benefits for the Photonic Sigmoid NNs that can reach below BER HD FEC limit for fiber lengths
up to 42 km, at an effective bit transmission rate of 48 Gb/s.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The recent resurgence of optical computing, fueled by both architectural and hardware break-
throughs [1], in conjunction with the growing success of Machine Learning (ML)-based
approaches across the optical network and communication domain [2–4], are setting the stage
for a new wave of converged ML-optics. In this framework, the combination of Deep Learning
(DL) techniques with physical or artificial implementations of non-linear optical phenomena [5]
are showing an enhanced performance [6]. In particular, autoencoder Neural Networks (NNs)
have been gathering significant attention as a lower complexity, DL-based alternative in fiber
communication link dispersion compensation [7–10]. Previous demonstrations have already
showcased their credentials to enhance the reach and data rate of Intensity Modulation/Direct
Detection (IM/DD) links compared to conventional equalization techniques [11]. All these DL
models rely on the use of Rectified Linear Unit (ReLU) and ReLU-variants as their nonlinear
activation functions, proceeding along the typical and successful paradigm of digital Artificial
NNs (ANN).
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More recently, however, the important progress reported by Deep Learning training models in
adapting over the rapidly advancing neuromorphic photonic hardware [12–15] is shaping a new
DL framework that has a strong potential to outperform digital ANN layouts in certain applications
[16]. This DL framework is aligned to the idiosyncrasy of the underlying neuromorphic hardware,
adapting to requirements and specifications not typically encountered in digital ANNs, i.e.
analog noise [17], limited weight, input and output value range [1,18,19] and, last but not least,
non-typical nonlinear activation functions [5,20]. The combined use of properly adapted DL
training algorithms and analog photonic NN hardware can be referred to as an optics-informed or
optics-inspired NN platform, which is governed by mathematical descriptions that stem from the
physical laws of the photonic hardware. These have already shown certain performance benefits
when applied in typical DL benchmarks [16,20] but have been never utilized for problems relating
to optical communication and/or optical processing applications. Taking, however, into account
that optical nonlinearities have been employed successfully in the past for signal restoration
and regeneration purposes [21,22], the use of optics-informed nonlinear activation functions in
DL engines that target optics-related problems could eventually strengthen the compensation of
unwanted signal degradation phenomena.

In this paper, we propose and experimentally validate the performance of an optics-informed
NN in an End-to-End DL-based IM/DD link, utilizing a non-linear activation function that is
provided as a sigmoid-variant activation by a semiconductor-based optical module [5]. This
nonlinear function, commonly referred to as “Photonic Sigmoid”, follows a logistic sigmoid
shape with a steep transition, with its physical implementation enabling also the parametrization
of the photonic sigmoid slope. Through an extensive simulation analysis, we optimize the slope
of the deployed photonic sigmoid activation function and benchmark its performance versus
ReLU-based configurations that are commonly employed in state-of-the-art End-to-End DL
systems. The simulation results along with the experimentally acquired data for transmission
links up to 42 km at an effective rate of 48 Gb/s reveal improved performance both in noise- and
dispersion-limited channels compared to respective ReLU-based demonstrations. A significant
3.5× transmission reach extension over state-of-the-art ReLU-based End-to-End DL schemes is
experimentally validated for a Bit Error Rate (BER) reference of 10−6, indicating the advantages
of the optics-informed NN when utilized in a typical optics-dominated application field.

2. End-to-end communication link simulation model

We begin our analysis by developing the simulation model of an End-to-End communication
channel as proposed in [8]. The model emulates an auto-encoder based IM/DD system, that
demarcates from conventional PAM-M modulation formats by encoding the information in
analog-time series [8], while also encapsulating the impairments of a communication link, such as
nonlinearities arising from the square-law detection and fiber chromatic dispersion. The system is
implemented as a deep fully connected feedforward ANN that mitigates the nonlinearities through
the optimization of the transmitter-channel-receiver in a single End-to-End process. Figure 1
depicts the complete End-to-End ANN model comprised of three main parts: the transmitter, the
nonlinear channel, and the receiver.

The Transmitter (Tx) NN can be viewed as the first 4 layers of the autoencoder, which processes
the data in blocks. Each block, carrying log2(M) bits, is encoded in a one-hot vector of size M,
and fed to the input layer of the Tx NN. The Tx NN consists of an input layer with M neurons,
two hidden layers of 2 M neurons and an output layer with n neurons. Each block of log2(M) bits
is transformed into a vector of n samples by this NN. In order to trigger the memory effect of
the fiber nonlinear dispersion, during the training phase N= 11 consecutive blocks are fed into
the channel per input forward propagation. Finally, the resulting blocks are concatenated by the
serializer forming a waveform of N·n samples.
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Fig. 1. Simulation model of the End-to-End IM/DD optical link comprising the ANN Tx
and Rx, and the communication channel. Four different scenarios were evaluated (i) the
AWGN channel, (ii) the Dispersive channel where only chromatic dispersion is considered,
(iii) the Dispersive channel with constant AWGN, where a constant power at the received is
considered, and (iv) the Dispersive AWGN channel, that emulates a typical channel.

The output of the Tx NN is used to drive a Lithium Niobate (LiNbO3) Mach-Zehnder
Modulator (MZM). To account for the limited bandwidth of the opto-electronic components, the
Tx NN output is passed through a Low-Pass brick wall Filter (LPF) with a 3-dB bandwidth of
36 GHz. Subsequently, zero mean Additive White Gaussian Noise (AWGN) (nDAC) is added to
the waveform, emulating the quantization noise of the employed Digital-to-Analog Converter
(DAC), and correlated to its Effective Number of Bits (ENOB), through [23] :

σq =
√︁

3P · 10−(6.02·ENOB+1.76)/10 (1)

where P corresponds to the average power of the optical signal. Finally, a sinusoidal function
model fMZM(x) = sin(x) imprints the electrical signal originating from the DAC on an optical
Continues Wave (CW) light, emulating the transfer function of an MZM.

The signal emerging at the MZM output is injected into the communication channel that
emulates optical fiber chromatic dispersion into the frequency domain through [24]

D(z,ω) = e
(︂
j β2

2 ω2z
)︂

(2)

where β2 is the chromatic dispersion coefficient, ω is the angular frequency of the light wave
and z corresponds to the fiber length. In order to quantify the effects of chromatic dispersion
and channel noise when both of them are simultaneously present but also as stand-alone signal
degradation factors, we consider four different communication channels for our analysis: (i) an
AWGN channel, where a simple channel without fiber transmission, and as such zero chromatic
dispersion, and variable losses was considered and emulated with an optical attenuator, (ii) a
Dispersive channel with zero AWGN, where the channel comprises a Single Mode Fiber (SMF)
of varying length, with the attenuation factor set to a = 0 dB/km, in order to study the individual
contribution of fiber chromatic dispersion, (iii) a Dispersive channel with constant AWGN, which
corresponds to an automatic gain amplified transmission link, with variable SMF length and an
attenuation coefficient of a = 0.2 dB/km, where a constant output power level at the Rx front end is
maintained. This channel is simulated through an automated gain Erbium Doped Fiber Amplifier
(EDFA) with an Amplified Spontaneous Emission (ASE) noise negligible compared to the optical
channel noise. (iv) A Dispersive AWGN channel, where a regular transmission link with varying
SMF length is considered, with the attenuation coefficient set to a = 0.2 dB/km [25]. After
propagation through the SMF, the model applies the photodetection square-law and introduces
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AWGN nEL, correlated to the photodiode (PD) input power and attributed to the following noise
sources: Transimpedance Amplifier (TIA) thermal noise, shot noise, amplification noise and laser
Relative Intensity Noise (RIN). It should be noted that nEL, is correlated with optical attenuation
(α) introduced from the transmission link and correlated with the back-to-back experimentally
measured noise (σref ) and the SMF length (ℓ) through:

σnEL =
σref

√
e(−αℓ)

(3)

Finally, the signal passes through an LPF with a 3-dB bandwidth of 36 GHz and quantization
noise (nADC) is added, which emulates the effect of the Analog-to-Digital Converter (ADC).

At the ingress of the Receiver (Rx) NN, a deserializer separates the waveform in N= 11 blocks
of n samples, isolating only the middle block for processing. The central block is launched into
the Rx NN, with its dimensions mirroring in reverse the Tx NN. The final Rx NN layer exploits
the softmax activation function, leading in a probability vector with a size of M, i.e. identical to
the size of the initial One-hot vector. Finally, the BER of the system is calculated, and used as
the main metric for the End-to-End communication channel performance.

Table 1 summarizes the parameters used for the simulation of the End-to-End optical
communication channel. It should be noted that the sampling rate in the simulations was set at
320 GSa/s to provide an adequate resolution for the signal representation, capture in detail any
spectral broadening effects [26] and correlate the 80 GSa/s rate of the experimentally available
DAC with the simulation model.

Table 1. End-to-end simulation parameters

Simulation Parameters

M 64

n 40

Sampling Rate 320 GSa/s

Symbol Rate 8 GSym/s

Information Rate 6 bits/sym

Effective Bit Rate 48 Gb/s

LPF bandwidth / type 36 GHz / Brick Wall

ENOB (DAC & ADC) 5

Fiber Dispersion coefficient (D) 16.2 ps/nm·km

During the optimization of the channel, the network was trained with a supervised learning
style, evaluating the autoencoder ability to reconstruct random-generated bit sequences. The
autoencoder was trained exploiting an ADAM optimizer, with variable learning rate, over a
cross-entropy loss function. The models were trained for 1000 epochs on a set of 2.53·104

randomly generated blocks and validated on a set of 1.54·104 blocks, which have been generated
with a different seed from that of the training data to avoid overfitting due to NN-related pattern
recognition. [27] Towards benchmarking the effect of the activation function on the final achieved
End-to-End performance, the simulation of each different channel was performed for three
different activation functions configurations. In the first study, the previously demonstrated
End-to-End paradigm was followed [8], with the Rectified Linear Unit (ReLU) applied in all
layers except the Tx’s NN final layer, where the Clipping ReLU (CReLU) was employed in
order to clip the values in range of (0; pi/4), corresponding to the linear range of the MZM. The
two optics-inspired activation functions that were additionally benchmarked are (1) a variant
of the Photonic Sigmoid function reported in [5] and derived from semiconductor optical non-
linearities and (2) a variant of the electro-photonic sinusoidal function clipped in the y ∈ [0, 1],
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corresponding to the electro-optic response of an MZM device [20]. In the photonic-sigmoid
configuration the Tx’s NN output was limited to the range [0; π/2], that given the incorporation
of the MZM transfer function in the communication model resulted in no additional performance
degradation. Figure 2 depicts a schematic presentation of the three different activation functions
with x ∈ [−1, 2] along with their mathematical expressions.

Fig. 2. CReLU, Photonic Sigmoid, Sinusoidal function plots along with their mathematical
expressions.

To quantify the improved performance of an End-to-End DL channel embedding an optics-
inspired activation function, we begin our analysis by quantifying the performance of the
Dispersive AWGN channel, when the Tx and Rx NNs employ the photonic sigmoid in their
hidden layers and the fiber length takes values in the {10-42} km range. The Photonic Sigmoid
function can be described by the general expression of the logistic sigmoid function:

f (x) = A2 +
A1 − A2

1 + e(x−x0)/d
(4)

with A1, A2,, d derived by the experimental realization in [5] and set to A1= 0.06, A2= 1.005,
d= 0.033. The parameter d relates to the slope of the logistic sigmoid function and can be
tuned in the experimental realization through fine control of certain optical power levels [5],
allowing for different variants of the photonic sigmoid to be studied as the activation function in
the End-to-End DL network. Figure 3 (a) illustrates the achievable range of photonic sigmoid
transfer functions within the slope tunability supported by its experimental implementation, while
Fig. 3 (b) depicts the simulation results for the End-to-End Dispersive AWGN communication
channel. The analysis reveals that the performance of the End-to-End channel, in terms of
achieved BER, improves monotonically from d= 0.023 to d= 0.073, according to BER values at
35 km, and then plateaus and slowly decreases as d continues to increase up to d= 0.113. Based
on this observation, throughout the rest of our study we employ the photonic sigmoid variant
with d= 0.073.

Figure 4 (a)-(d) illustrates the acquired simulation results for the four communication channels.
Specifically, Fig. 4 (a) depicts the obtained BER in the case of an AWGN channel, when the
average optical power at the photodiode decreases from 3.5 to -9 dBm, with an attenuation factor
that corresponds to the expected values when the signal propagates over a regular short reach link.
Each label over the data points, up to -4.5 dBm, correlates the optical power reaching the Receiver
PD with the length in km of the SSMF short reach link. As can be observed, the photonic
sigmoid outperforms the ReLU/CReLU across the whole range of injected PD power, revealing
the enhanced noise robustness that the steep profile can offer to NN autoencoders. Figure 4 (b)
presents the simulation results for the Dispersive channel with zero AWGN, showing that the
photonic sigmoid again significantly outperforms the ReLU/CReLU. Finally, Fig. 4 (c) and (d)
depict the results for the Dispersive Channel with constant AWGN and the regular short reach
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Fig. 3. (a) Photonic sigmoid function for different d values (b) Achieved BER for different d
parameter values of the Photonic Sigmoid function tested on the Dispersive AWGN channel.

channel, respectively, revealing that the previously identified benefits of the photonic sigmoid
extend to more complex channels that include both noise and chromatic dispersion. In the case
of Dispersive AWGN channel six extra simulated fiber lengths are included for each activation
function, in order to provide a more detailed insight into their response. Finally, it should be
noted that the square-law of detection at the photodiode translates the chromatic dispersion and
the noise of the channel in nonlinear impairments, with Fig. 4 results effectively showcasing that
the photonic sigmoid offers significant benefits compared to the ReLU/CReLU and sinusoidal
functions in non linear compensation tasks.

(b) Dispersive Channel with zero AWGN
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Fig. 4. Simulation results for (a) AWGN channel, (b) Dispersive channel with zero AWGN,
(c) Dispersive channel with constant AWGN and (d) Dispersive AWGN channel including
six extra simulated fiber lengths. In each case the performance of the examined activation
functions (ReLU/CReLU, Photonic Sigmoid and Sinusoidal) is benchmarked.
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3. Experimental evaluation and analysis of Dispersive and AWGN optical chan-
nels

Proceeding with the experimental evaluation of the end-to-end autoencoder we developed the
experimental setup presented in Fig. 5, which allows the assessment of the different activation
configurations for the three communication channels described in Section 2. The Dispersive
channel with zero AWGN was excluded from the experimental study, as it would require zero
noise levels that is practically unfeasible, while we focused on the ReLU/CRelU and the photonic
sigmoid activation functions, as the highest performing functions from the “traditional” and
optics-inspired paradigms. During the experimental testing, a randomly generated sequence of
5·104 elements was inserted in the Tx NN, while the appropriate trained model was applied. The
output samples generated at 320 GSa/s were subsequently serialized and filtered in a 36 GHz
bandwidth LPF. The LPF served a two-fold purpose: (i) Simulated the limited electro-optic

Fig. 5. Schematic of the experimental Setup employed for the system evaluation indicates
the (i) AWGN channel, (ii) the Dispersive channel with constant AWGN and (iii) Dispersive
AWGN channel.

bandwidth of the setup during training. (ii) Allowed preserving the spectral information of the
input 320 GSa/s data stream, even when using the experimentally available 80 GSa/s DAC, as
most of the spectral power density of the waveform is concentrated below 36 GHz. The resulting
signal, after amplification with a Radio Frequency (RF) amplifier, was employed to drive an
MZM acting on an incoming CW laser signal at λ=1550 nm, resulting in a data stream with an
effective data rate of 48 Gb/s. In accordance with the studied simulation channels, we constructed
their experimental analogous i.e., (i) AWGN channel, that allows isolating the optical channel and
photodiode noise, while also containing an optical variable attenuator that adjust the input power
at the photodiode. (iii) The Dispersive Channel with constant AWGN, employing a single mode
fiber (SMF) spool of varying length, with attenuation and chromatic dispersion parameters of
α=0.2 dB/km and D= 16.2 ps/nm·km, respectively. The optical fiber is followed by an automated
gain EDFA, that maintains at its output the same optical power for different fiber lengths and an
optical band pass filter (OBPF) with a 3-dB bandwidth of 1 nm for ASE noise rejection. (iv) The
Dispersive AWGN channel that comprises a varying SMF spool. In all cases the optical signal is
then converted to an electrical signal through a 70 GHz bandwidth photodiode, amplified in a
TIA, digitized by a 160 GSa/s ADC and finally filtered in a digital brick wall type filter with
36 GHz bandwidth. The resulting recovered waveform is upsampled by factor of 2 to match the
simulation model sampling rate of 320 GSa/s. The final waveform is deserialized and fed into the
Rx NN. Prior final BER estimation, in order to account for the inevitable variations of the model
and the experimental setup, the End-to-End NN is retrained in each case with a sequence of
2·106 symbols. Finally, the achieved BER of the system is estimated by comparing the final Rx
NN layer with the corresponding training label, while it should be noted that the finite memory
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of the DAC set a maximum number of transmittable samples and as such bound the minimum
achievable BER value to 1.2·10−6 with confidence interval of 95%. [28]

Fig. 6. Simulation and experimental BER values versus fiber testing length for the (a)
AWGN channel, (b) the Dispersive channel with constant AWGN, (c) the Dispersive AWGN
channel and (d) the simulation of Dispersive AWGN channel for higher information rates.

Figure 6 presents the experimentally obtained BER values for the three different communication
channels and the two activation functions configurations plotted alongside the simulation
estimations. In Fig. 6 (a), the results for the AWGN channel reveal that the Photonic Sigmoid
achieves the minimum BER value at as low as -6 dBm of input optical power at the photodiode,
outperforming the ReLU/CReLU, which can only reach this value for input power of -3 dBm.
Figure 6 (b) illustrates the experimental acquired BER values for the Dispersive channel with
constant AWGN, showcasing the Photonic Sigmoid achieves BER values well below the Forward
Error Correction (FEC) limit (4·10−3) for fiber lengths up to 42 km while the corresponding
value for ReLU/CReLU configuration barely surpasses 17 km. In the last scenario, where both
chromatic dispersion and AWGN increase with fiber length, the Photonic Sigmoid is still able
to provide a transmission system with BER values below the FEC limit for every testing fiber
length, outperforming also in this case the ReLU/CReLU. In summary, the experimental analysis
validated in all cases our theoretical projections, showcasing an excellent agreement with the
simulation results and highlighting the clear benefits originating from the employment of the
Photonic Sigmoid activation function in end-to-end trained optical communication channels.
Finally, Fig. 6 (d) depicts the simulated BER performance of the two end-to-end autoencoder
configurations, when the sampling rate is increased to 400 GSa/s and 480 GSa/s, resulting in
aggregate information rates of 60 Gb/s and 72 Gb/s, respectively. The optics informed NN
autoencoder significantly outperforms the ReLU across all tested rates and fiber lengths, allowing
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for lower than HD-FEC at up to 25 km and 60 Gb/s, showcasing that using higher-end equipment
can allow for even significant performance benefits.

Delving deeper into the NN performance in order to provide insights into the mechanism of
operation that allows the photonic sigmoid to outperform the ReLU/CReLU, we plot in Fig. 7 (a)
and (d) the Tx NN Output time traces in juxtaposition with the acquired traces before the Rx NN
input, at 48 Gb/s and 35 km links, for both cases. Figure 7 (b) and (c) present 128 samples of
the Tx and Rx 2nd hidden layer outputs, when ReLU is applied, while Fig. 7 (e) and (f) show
the corresponding results for the Photonic Sigmoid. The four graphs reveal that the use of the
Photonic Sigmoid forces the NN to operate in a more binary-like domain, as most of the samples
are grouped in two discrete levels, while ReLU exhibits an analog-like response with samples
amplitude taking more arbitrary values. The steep decision threshold of the Photonic Sigmoid
assists the NN to converge better at the targeted values and as such allows for higher performance.
This can be eventually also explained by the respective behavior of a steep logistic sigmoid
function provided by semiconductor-based regenerative modules when applied in noise- and
dispersion-dominated fiber communication channels, where their steep response and their strong
power equalization properties facilitate the compensation of corresponding signal degradation
effects. [21,29]

Fig. 7. (a) Acquired waveforms at 48 Gb/s of Tx NN output and Rx NN input for the
ReLU/CReLU configuration at 35 km fiber length. Output values of the 128 nodes for 8
different samples at the (b) 2nd hidden layer of Tx NN and (b) at the 2nd hidden layer of Rx
NN for the ReLU activation function. (d) Acquired waveforms of 48 Gb/s signal at the Tx
NN output and Rx NN input for the Photonic Sigmoid at 35 km fiber length. Output values
of the 128 nodes for 8 different samples at the (e) 2nd hidden layer of Tx NN and (f) at the
2nd hidden layer of Rx NN for the Photonic Sigmoid activation function.

4. Discussion

In order to unravel the underlying properties of optics informed NNs allowing them to outperform
conventional implementations in chromatic dispersion compensation tasks, we benchmarked the
performance of ReLu- and PhotonicSigmoid- based NNs, as function approximators of chromatic
dispersion in a 10 km dispersive SSMF link.
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Figure 8 (a) illustrates the employed 3-layer NN architecture, with the input, hidden and
output layer comprising 2, N and 2 neurons, respectively. The input dataset was constructed
using pairs of 2 samples of an input Gaussian pulse spanning in a time window of {75,75} ps
where Pin = e(−t2/(T2

0 )), with T0= 10 ps, as illustrated at the inset of Fig. 8 (a). The output pulse
after propagation through a 10 km SSMF was analytically calculated using the well-defined
pulse-broadening equation [24]:

TL(z) = T0

√︄
1 +

(︃
z

LD

)︃2
(5)

where z is the propagating distance set to 10 km, T0 the initial duration of the pulse and
LD = T2

0/|β2 | the dispersion length that can be calculated through the dispersion coefficient of a
typical SSMF fiber [25] at 1550 nm, resulting in D= 16.2 ps/nm·km and β2= - 20.7·103 fs2/m.
The two NN configurations, employing the ReLu and Photonic Sigmoid activation function,
respectively, were trained using an ADAM optimizer for 3000 epochs with a constant learning rate
of 10−4, with N being the number of neurons of the hidden layer ranging from {2-16}. Figure 8
(b) put in juxtaposition the achieved mean square error (MSE) for both configurations, revealing
that the Photonic Sigmoid can achieve significantly lower MSE across all hidden layer variations,
an effect more pronounced when the number of neurons in the hidden layer is lower than 16.
Finally, Fig. 8 (c) offer a pictorial representation of the enhanced approximation capabilities
of optics-informed NN in modelling chromatic dispersion, through overlapping the targeted
output pulse versus the outputs of 8-neuron Relu- and Photonic Sigmoid based NNs. As can
be clearly observed, the significant differentiation between the offered non-linearity of ReLU
and underlying non-linear chromatic dispersion phenomenon results in lower performing NN
deployments. Given that the main target of the end-to-end NN autoencoder is counteract the
channel’s degradation effects, a task equivalent with approximating the system inverse transfer
function, it is evident that the higher function approximation properties of optics informed NNs,
allow higher performance in optical communication applications.

Fig. 8. (a) Scheme of the 3-layer perceptron that approximates the broadening of a gaussian
pulse caused by the chromatic dispersion of a 10km optical fiber. (b) MSE values for the
two different activation functions for different number of neurons in the middle layer of the
perceptron. (c) Graph of the output pulses from a multilayer perceptron with 8 neurons at
the hidden layer, plotted alongside the target pulse.

5. Conclusion

In this work we incorporate an optics-informed NN in an End-to-end Deep Learning network
and demonstrate its application in an optical IM/DD fiber transmission link, leveraging an
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optics-informed activation function for compensating the fiber chromatic dispersion and square-
law detection related non-linearities. Our simulation and experimental analysis benchmarks
the significant performance benefits of the Photonic Sigmoid trained NN versus the broadly
implemented ReLU and ReLU-variants trained NN. The Photonic Sigmoid NNs can reach below
BER HD-FEC limit for fiber lengths up to 42 km, at an effective bit transmission rate of 48 Gb/s.
These outcomes validate that NNs, employing optics-derived activation functions, can act as a
key enhancement factor in modern ML enhanced transmissions on IM/DD links that are governed
by strong nonlinearities. Finally, the versatile properties of the Photonic Sigmoid offer enhanced
thresholding properties ideally suited for deployment in short reach autoencoder-based NN, while
its photonic implementation can be easily co-integrated alongside next generation transceivers.
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