
JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. XX, NO. XX, 2023 1

Analysis of Integration Technologies for
High-Speed Analog Neuromorphic Photonics

Lorenzo De Marinis, Member, IEEE, Nicola Andriolli, Senior Member, IEEE,
and Giampiero Contestabile

Abstract—While the use of graphic processing units fueled the
success of artificial intelligence models, their future evolution
will likely require overcoming the speed and energy efficiency
limitations of current implementations with the use of specialized
neuromorphic hardware. In this scenario, neuromorphic photonic
processors have recently proved to be a feasible solution.

In this paper, we first discuss basic analog photonic
processing elements based on Mach-Zehnder modulators and
assess their effective bit resolution. Then we evaluate how
different photonic integration technologies affect the performance
and the scalability of analog optical processors, in order to
provide a clearer path toward real-world implementations of
such engines. To this aim, we focus our analysis on the silicon on
insulator (SOI), lithium niobate on insulator (LNOI), and indium
phosphide (InP) platforms. In particular, we have numerically
evaluated the performance of the Photonic Electronic Multiply-
Accumulate Neuron (PEMAN) and its tensorial version, both
based on Mach-Zehnder modulators, with the three technologies
in terms of resolution, energy efficiency, and footprint efficiency.

LNOI modulators achieve the best resolution at high speed,
with 4.3 bits at 56 GMAC/s for the single PEMAN and
3.6 bits at 224 GMAC/S for the tensorial version. The
energy consumption in InP and LNOI platforms is the lowest,
accounting for just 13.2 pJ/MAC and 4.6 pJ/MAC for the
single and tensorial PEMAN, respectively. Nonetheless, SOI
devices outperform the others in terms of footprint efficiency,
reaching 18.6 GMAC/s/mm2 in the single-neuron version and
29.6 GMAC/s/mm2 in the tensorial version.

Index Terms—photonic analog computing, photonic neural
networks, photonic integration technologies.

I. INTRODUCTION

MODERN computers are general-purpose devices that
process information encoded in a symbolic form

through a chain of serial logic-based instructions. These
digital processors are typically based on the Von-Neumann
architecture, where a central processing unit (CPU) fetches
and executes instructions stored in a separated memory [1].
While this architecture is well suited to run sequential and
iterative algorithms with high-precision data representation,
recent breakthroughs in deep learning (DL) sprouted the
research toward alternative computing paradigms [2].

Deep neural networks (DNNs), the core elements of
DL, exploit a parallel computing strategy, with thousands
of simple primitives (i.e., artificial neurons) concurrently
working in interconnected structures [3]. The distributed
architecture of DNNs cannot be efficiently implemented by
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means of sequential instructions in a CPU. The use of
graphic processing units (GPUs) has allowed a higher degree
of parallelism in DNN processing, and thus a significant
throughput increase of DL models [4]. However, there are two
main issues when using CPUs/GPUs in this context:

The data movement problem: Logic operations
in digital processors are energy-efficient, while data
loading/offloading from memories constitutes the main
source of energy consumption even in very specialized
hardware [5]. Forefront GPUs rely on a parallelization
strategy, with hundreds or thousands of cores processing
concurrently, whose communication relies on complex
high-speed and energy-draining interconnect fabrics.

The hardware lottery: Introduced by Hooker [6], this
term describes a research idea that is successful thanks
to the compatibility with the available hardware and
software, not because of its superiority over other research
directions. The compatibility with GPUs was key for
the current success of DNNs. However, the use of such
hardware could hamper the development of novel AI
paradigms.

Nowadays, the main strategy adopted to advance DL models
is to exploit increasingly fast and interconnected GPUs to
support larger and larger DNNs. In this way, models such
as OpenAI chatGPT [7], the most advanced dialog and code
generator model, or DeepMind AlphaFold [8], which predicts
protein structures with unprecedented accuracy, have been
developed. However, this “bigger is better” paradigm cannot
be indefinitely followed for two main reasons: (i) the energy
consumed by DNNs is already hardly sustainable, just training
huge models emits as much carbon as five cars in their
lifetime [9]; (ii) their performance cannot be indefinitely
increased just by increasing the computing capacity [6]. DL
models cannot be easily deployed in application scenarios
where the footprint and the energy consumption of GPUs can
not be easily managed, such as in edge computing [10]. For
these reasons, DL is facing a new hardware bottleneck.

In this context, analog computing is experiencing a
renaissance related to the development of compact and
efficient DL accelerators [4]. Analog devices rely on a physical
implementation of artificial neurons to realize processors
with a parallel and in-memory compute strategy [11],
[12]. Electronic memristor crossbar arrays are a class of
such accelerators, where simple resistive tunable elements
(memristors) are arranged in square meshes to encode synaptic
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connections and perform distributed computations [2]. Among
all analog approaches, photonics-based ones have the
potential to meet the power consumption, bandwidth, and
latency requirements for DNN deployment, being a versatile
technology able to develop a notable variety of neural
architectures comprising convolutional DNN, spiking neural
networks, and reservoir computing [13], [14]. Leveraging the
growing maturity of integration platforms, photonic integrated
circuits (PICs) are widely used for analog information
processing [15] with a growing number of PICs proposed for
neuromorphic computing [16].

In this paper, we discuss the impact of photonic technologies
on the performance and scalability of analog optical
processors. The goal is to delineate a path toward real-
world implementations of these processors, whose potentiality
has been proven in recent demonstrations. The paper is
organized as follows: in Sec. II we outline the role of
photonics in neuromorphic computing and the resolution limits
of basic photonic processors exploiting either single-output
or X-coupled Mach-Zehnder modulators (MZM). Sec. III
discusses the most relevant features of several promising
integration platforms, and their impact on the development and
performance of analog photonic accelerators. In particular, we
considered the silicon on insulator (SOI), lithium niobate on
insulator (LNOI), and indium phosphide (InP) technologies,
as they provide sufficiently mature high-speed modulators.
To assess the impact of the integration platform on the
performance of neuromorphic accelerator devices, in Sec. IV
we report the numerical evaluation of the photonic-electronic
multiply-accumulate neuron architecture (PEMAN [17]) and
the 4-neuron Tensor-PEMAN[18], designed with the different
technologies. Three key performance indicators have been
assessed, namely (i) the bit resolution, (ii) the energy per
operation, and (iii) the footprint efficiency (FE). Finally, Sec. V
concludes the paper.

II. PHOTONIC NEUROMORPHIC ANALOG COMPUTING

The idea of optical computing arose in the past century:
already in 1965 Reimann and Kosonocky proposed the
use of laser devices to build a digital processor with the
aim to overcome the interconnection problems of electrical
circuitry [19]. Since then, several schemes and demonstrations
of optical logic gates with bulk and integrated implementations
have been developed, as well as photonic memories [20].
However, the benefits arising from the miniaturization of
electronic components outpaced the ones promised by optics,
and the idea of a photonic digital processor faded [13].

In the meanwhile, photonics has proven to be the
technology for long-distance communications. The advances
in photonic technologies have significantly increased the
transmission capacity of optical transceivers while reducing
their cost and power consumption. Today optics is used also
in short-reach intra-datacenter communications, exchanging
information at an energy cost comparable to a DRAM-based
CPU communication [21].

The recent advances in artificial intelligence (AI) reignited
the interest in photonic computing in the analog domain, as

discussed in Sec. I. Compared to analog electronics, optics can
support large structures with long interconnections as it is not
affected by skin and inductance effects introducing distortions
and limiting the operation frequency. Analog photonics based
on passive elements allows to build distributed computing
structures without dynamic power consumption beyond input
generation (transmitter) and output collection (receiver). In
these parallelized structures, the computation time is constant
with respect to the number of inputs n, corresponding
to the light time of flight. In the recent past, many
photonic neuromorphic devices have been reported in the
literature [13] implementing a great variety of architectures,
such as convolutional, feed-forward, and spiking neural net-
works, and reservoir computing [22], [23]. Nonetheless,
the increased throughput and power efficiency brought by
photonic accelerators come at a cost of some limitations in the
neural network model design [24]. The number of inputs per
neuron can vary from a few in all-optical approaches to several
hundreds in electro-optic solutions [17]. Also, the depth of
the architectures (i.e., the number of neural layers) and the
implementable nonlinearities vary significantly [22].

In typical optical neuromorphic architectures, the most
relevant limiting factor is noise, which accumulates and
produces unwanted fluctuations reducing the appreciable
variations in signals. Together with noise, also distortions
limit the accuracy at which values can be distinguished as
a consequence of the operations performed in an analog
processor. The number of different values that can be resolved
defines the analog system resolution. The latter is usually
quantified by the Effective Number of Bits (ENOB), which
denotes the number of bits required to digitally store the
value. Hence, DL models designed to be run on analog
accelerators cannot exploit the common floating point number
representation. Instead, trained models should exploit integer
parameters, with a bitwidth resembling the ENOB of the
analog hardware. Considering these hardware constraints, a
proper design of DL models is pivotal. The recent literature
reports some practical strategies to this end [24], [25], [26].

The most critical aspect of photonic processors concerns
their high-speed stages, essential to fully leverage the
bandwidth and latency advantages of optical approaches. For
this reason, at least one stage for high-speed input generation
is necessary, which ultimately sets the limits of resolution,
speed, and power consumption of the whole system. Despite
this pivotal role, fast input generation is often not adequately
discussed in the literature.

In the following, we discuss in depth how noise, distortion,
and bandwidth affect the bit resolution of optical signals
when generated by high-speed modulators as inputs for analog
neuromorphic processors. In particular, we consider both (i)
single-output and (ii) X-coupled MZM acting on the intensity
of a continuous-wave laser source, and terminated on a single
and balanced photodetector, respectively.

A. Single-Output Mach-Zehnder Modulator

An effective metric to account for both noise and distortions
in analog devices is the Spurious-Free Dynamic Range
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(SFDR). This represents the ratio between the signal power
and the power of distortions when the latter equals the power
of noise [27]. Hence, the SFDR can be regarded as the
maximum achievable signal-to-noise and distortion ratio, and
can be thus related to the maximum ENOB through the
equation [28]:

ENOB =
SFDRdB −1.76

6.02
(1)

where the SFDR value is represented in decibels. To quantify
the SFDR, a two-tone test on the modulating device can be
performed to assess the intermodulation distortions, of which
the third order one is the most critical as its components
usually fall within the bandwidth of the signal [27]. Noise
is usually independent of the modulating device and three
sources of noise can be distinguished: (i) thermal noise, (ii)
shot noise, and (iii) laser relative intensity noise (RIN). The
first one derives from the thermal agitation of electrons in
conductors at thermal equilibrium, arising at the transmitting
and receiving devices in photonic circuits. The shot noise
derives from the quantum nature of light, reflecting the random
arrival of photons at the PD. The spontaneous emission in the
laser source causes the RIN, which we consider frequency-
and temperature-independent for simplicity. Their powers per
unit bandwidth [W/Hz] can be expressed as:

pth = kBT

psh =
1
2

qI0R

prin = 10
RIN
10 I2

0 R

(2)

where pth, psh and prin are the powers of thermal, shot, and
RIN noises, respectively, kB is the Boltzmann constant, R is
the load resistance at the PD side, q is the electron charge,
I0 is the average power flowing in the load resistance, and
RIN is the relative laser noise. I0 depends directly from the
input laser power with the relation I0 = rPDPi/2L, where Pi
is the laser power, rPD is the PD responsivity and L are the
losses between laser and PD. Considering the noise sources
of Eq. (2), the SFDR is derived through the power intercept
point between the fundamental tone and the intermodulation
distortion of interest [27], i.e., the point in which the power
of the fundamental and the distortion components are equal.
The SFDR when using a single-output (SO) MZM is then:

SFDRSO[dB Hz
2
3 ] =

2
3

[
10log10

(
I2
0 R

)
−10log10

(
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qI0R
2

+10
RIN
10

I2
0 R
4

)] (3)

where the factor g accounts for the thermal noise of the
transmitter part, g ≤ 1 in absence of amplification and is
usually negligible. The second term between square brackets
limits the SFDR growth and, as the largest term dominates in
the logarithm of a sum, three noise regimes can be identified.
The first one is the thermal noise regime, which is in the
low laser power range. Here, increasing the laser power
gives a quadratic growth of the SFDR. The second regime is

established when the shot noise component becomes dominant.
The SFDR still increases with the pump power but in a linear
fashion, as also the shot noise depends on the average PD
current I0. Eventually, the system enters the RIN regime, where
the SFDR saturates.

To quantify how the analog resolution varies with the laser
power, we consider a realistic scenario with the following
parameters: R = 50 Ω, T = 290 K, L = 10, rPD = 0.8 A/W,
and RIN =−160 dB/Hz. Fig. 1 shows the SFDR of a single-
output MZM configuration as a function of input laser power
with a dashed line, together with the contribution of thermal
noise (red line), shot noise (blue line) and RIN (green line).
The red line slope is double the blue line slope, reflecting the
quadratic increase of the thermal noise contribution related
to the laser pump power while for shot noise the increase is
linear. The green line is horizontal, as RIN is independent
of input laser power, and gives an upper bound. The right
vertical axis of the figure reports the bit resolution at 10
GHz, which is evaluated through Eq. 1 and the formula
SFDR(B Hz) = SFDR(1Hz)− 2

3 10log(B), where B is the
bandwidth [27].
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Fig. 1: SFDR of a single-output MZM as a function of input
laser power (dashed line). Thermal, shot and RIN components
are depicted with a red, blue and green line, respectively.

In the considered case, with a rather low RIN value of
−160 dB/Hz, the maximum resolution at 10 GHz is close
to 8 bits. However, this requires a large laser power, which
contrasts with the target of energy efficiency that underpins
the use of photonic neuromorphic processors. In practice, the
input laser power varies in the range 0-10 dBm, where the
resolution at 10 GHz goes from 4 to slightly above 6 bits.
This trend outlines an inherent trade-off between resolution,
power, and bandwidth in photonic analog processors, where
a higher resolution can be achieved by increasing the power
consumption or decreasing the bandwidth, i.e., the computing
speed.

B. X-Coupled Mach-Zehnder Modulator

A dual-output (or X-coupled) MZM followed by balanced
photodetectors can be used to reduce the impact of RIN, with
reported results of 24 dB RIN suppression [29]. Indeed, the
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common mode rejection deriving from the balanced detection
suppresses the RIN associated with the DC component if
the MZM is biased in quadrature. The RIN is not entirely
suppressed since the component related to the modulating
signal remains. Moreover, balanced detection allows for the
representation of negative numbers and gives a theoretical
6 dB output power advantage compared to the single PD
case, as the received current doubles with the same received
power. However, the shot noise doubles as well, due to the
contribution of both detectors. The total SFDR becomes [16]:

SFDRX[dB Hz
2
3 ] =

2
3

[
10log10

(
4I2

0 R
)

−10log10

(
(1+g)kBT +qI0R+10

RINX
10 I2

0 R
)] (4)

where I0 is the average photocurrent for the single-output
MZM case and RINX is the suppressed RIN value in
logarithmic scale. Fig. 2 reports the SFDR and the bit
resolution at 10 GHz for this configuration (dashed line),
considering the following parameters: R = 50 Ω, T = 290 K,
L = 10, rPD = 0.8 A/W, RIN = −150 dB/Hz and a RIN
suppression of 20 dB (i.e., RINX = −170 dB/Hz). The three
noise contributions are depicted with a red (thermal), a blue
(shot), and a green (RIN) line. The bit resolution at 10 GHz
exceeds 8 bits at high power, while in the typical 0-10 dBm
input laser power range, the bit resolution goes from ∼4.5 to
almost 7 bits. The graph also reports with a black solid line
the total SFDR for the same parameters in the case of a single-
output MZM. The X-coupled device provides a 6-dB gain in
SFDR up to 10 dBm, where the single-output scenario reaches
the RIN regime and the advantage increases further.
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Fig. 2: SFDR of a X-coupled MZM as a function of input laser
power (dashed line). Thermal, shot, and RIN components are
depicted with a red, blue, and green line, respectively. The
black solid line represents the SFDR of a single-output MZM
with the same parameters.

III. PHOTONIC INTEGRATION TECHNOLOGIES

The technological platform used to implement the
neuromorphic photonic devices affects the performance of

the overall processor. The previous section has discussed
the impact of the analog photonic processor parameters on
the achievable bit resolution. This metric is of paramount
importance as is directly related to the accuracy of DL models
running on the photonic hardware [24]. However, several other
aspects play an important role in the practical implementation
of DL photonic accelerators. In this section, we discuss the
main features of SOI, LNOI, and InP photonic platforms
affecting the performance and the scalability of neuromorphic
accelerators. These platforms have been chosen as they provide
quite mature high-speed modulating devices. We evaluate the
following key metrics: available optical components, required
optical I/O, footprint usage, CMOS compatibility, and losses
in waveguides. Additionally, we report four important metrics
regarding high-speed modulators since they are critical for the
power efficiency and the bit resolution of analog processors.
The metrics related to the MZM are insertion loss (IL),
bandwidth, half-wave voltage, and dynamic ER.

A. Silicon on Insulator

The silicon photonics industry has seen a formidable
development in the last two decades, pushed by the datacom
and telecom fields [30]. The SOI technology is inherently
compatible with the CMOS process as it exploits the standard
silicon fabrication techniques. Currently, the SOI platform is
a high-yield, robust, and mature process. A relevant aspect of
the development of novel neuromorphic PICs is the availability
of design and simulation software for SOI, from computer-
aided design tools to optical simulators. Silicon photonics
manufacturers usually provide process design kits (PDK) with
compact models of their devices, allowing circuit simulation
and design of novel architectures in a fast and predictable
way [31].

The high refractive index of silicon allows photonic
structures to be very compact [30] and connected with
tight bends (radii of curvature even below 10 µm), while
propagation losses are typically in the range 2-3 dB/cm. Fast
modulators can be developed relying on the plasma dispersion
effect of PN junctions, usually with depletion modulation of
reverse PN junctions, whose 3-dB bandwidth hardly exceeds
50 GHz. High-speed modulators exhibit rather high losses
and a rather low dynamic extinction ratio (ER), both reducing
resolution. The MZM length is usually a couple of millimeters,
resulting in rather compact devices [32]. The linearity of SOI
integrated modulators is moderate, characterized by an SFDR
more than 20 dB below the one of bulk LNOI modulators.
The linearity can be improved at a cost of more complex
electronic and photonic hardware [33]. The quite large half-
wave voltage (Vπ ) requires RF drivers, which impacts the
circuitry complexity and the energy consumption [31]. High-
speed PDs are embedded in the waveguides thanks to
germanium processing [34]. Silicon is an indirect band-gap
semiconductor, which precludes the development of practical
lasers, a fundamental building block also for neuromorphic
applications. SOI PICs require external light sources, with
the consequent need for optical I/O. Here, the high refractive
index of silicon is a disadvantage, causing a large optical mode
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TABLE I: Comparison between SOI, LNOI, and InP photonic integration technologies.

Platform Optical
Components Optical I/O Footprint CMOS

Compatibility
Waveguide

Loss
MZM

IL
MZM

Bandwidth
MZM

Vπ

MZM
Dynamic ER

Silicon
on Insulator

Passives, PD and
phase modulators Input laser Lowest Yes 2-3 dB/cm ∼ 6 dB/MZM ∼ 50 GHz 3-6 V < 10 dB

Lithium Niobate
on Insulator

Passives and
phase modulators

Input laser
output PD Highest No < 1 dB/cm ∼ 1 dB/MZM > 100 GHz < 1.6 V > 20 dB

Indium Phosphide Passives and
all actives Not required Moderate No 1-2 dB/cm ∼ 6 dB/MZM > 70 GHz < 1 V < 10 dB

and refractive index mismatch with optical fibers. Despite the
advances in focusing grating and edge couplers, this remains
a critical aspect for the losses [31]. To reduce input losses,
a valid alternative is the hybrid integration of III-V lasers
on silicon PICs, which has seen notable progress in terms
of reliability and robustness [35].

B. Lithium Niobate on Insulator

Lithium niobate has been sometimes referred to as
the “Silicon of Photonics”, to remark its importance in
photonics equivalent to silicon in electronics. Lithium niobate
combines several features that make this platform particularly
suitable for photonic analog computing [18]. For once,
propagation losses have been demonstrated to be lower
than 0.3 dB/cm consistently across 6-in. thin film wafers,
showing a high process maturity [36]. Remarkably low losses
have been demonstrated also in traveling-wave (TW) MZMs
(< 1 dB/MZM) with an electro-optic bandwidth exceeding
the hundred of GHz [37]. The strong Pockels effect in
LNOI enables very low half-wave voltages (Vπ < 1.6 V),
compatible with conventional CMOS electronics voltages.
Indeed, high-speed DACs can directly drive LNOI modulators,
avoiding the use of cumbersome, power-hungry and potentially
distorting RF amplifiers. Dynamic ERs above 20 dB have been
demonstrated in LNOI MZMs [36].

The LNOI platform has also some disadvantages, stemming
from a rather large footprint of devices, with MZM length
falling in the tens of mm range. For this reason, complex
circuits developed with LNOI are not very cost-effective.
Additionally, a light source is missing in LNOI, leading
to similar considerations as for SOI. In this platform also
photodetectors are still missing, thus practically requiring
optical I/O handling both for input and output. Nonetheless,
demonstrations of hybrid integration of InGaAs/InP high-
speed PDs [38], on-chip LNOI photodetectors [39], and
lasers [40], [41] are promising to fill this gap in the foreseeable
future.

The SFDR in devices demonstrated so far is not optimal,
around 100 dB Hz2/3, but slightly larger compared to bulk
modulators [36]. As this technology is still at an early
stage of development, improvements are expected in terms
of SFDR, bandwidth, ER, and Vπ [36]. This does not hold
for the modulator length, which is likely to prevent the
implementation of very complex all-optical neuromorphic
circuits in this platform [16].

C. Indium Phosphide

Despite not being CMOS compatible, the InP platform
is a common choice when dealing with complex PIC
architectures [42]. Indium phosphide is the only established
photonic platform enabling the monolithic integration of all
passive elements (i.e., waveguides, couplers, filters. . . ) and
all active components, such as lasers, semiconductor optical
amplifiers (SOA), PDs, and high-speed modulators [43]. This
monolithic integration significantly reduces packaging costs,
avoiding the need for optical I/O and the related coupling
losses, while improving the overall system reliability [44].

InP high-speed modulators have been reported with
bandwidths exceeding 70 GHz and low half-wave voltages,
compatible with direct DAC driving [45]. A low Vπ below 1 V
has been demonstrated with a bandwidth of 67 GHz already
in 2014 [46]. Thus, CMOS DACs can be directly used to drive
the modulators avoiding bulky and power-hungry RF drivers,
as in the LNOI case. With this technology, optical losses fall
in the 2 dB/cm range, comparable with SOI, but one order of
magnitude larger than LNOI. Lower propagation losses have
been reported exploiting specific process steps, with a notable
0.4 dB/cm [47]. Additionally, SOAs make this platform able
to recover losses and, in neuromorphic chips, to implement
diagonal matrices with gain [16]. Moreover, the non-linear
behavior of SOAs can be exploited to both recover power and
apply an activation function in all-optical neural networks, as
demonstrated in [48].

Still, this platform presents some drawbacks. For instance,
the bending radius of InP waveguides is more than ten times
larger than SOI waveguides. The transition between active
and passive regions requires proper converters, the modulator
lengths fall in the mm range, longer than SOI modulators, but
shorter than LNOI ones. The dynamic ER (similar to SOI)
is moderate, with values below 10 dB in the tens of GHz,
limiting the dynamic range and thus the resolution. The RIN
of InP integrated lasers usually falls near -140 dB/Hz, also
limiting the maximum ENOB, as discussed in Sec. II, while
SOAs have noise factors above 4 and usually require additional
optical filters.

D. SOI, LNOI, and InP Comparison

Table I reports a comparison among SOI, LNOI, and InP
photonic platforms, discussing the main features of interest
for the design and fabrication of photonic neuromorphic
devices. They encompass the available optical components, the
required optical I/O, the chip footprint, the platform CMOS
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Fig. 3: The Tensor-PEMAN architecture, composed of a
single-output MZM that broadcasts the input signal to N
weighting X-coupled MZMs connected to as many PDs and
electronic front-ends.

compatibility, and the waveguide losses. A focus is given
to the metrics related to high-speed MZMs, as these are
fundamental elements for high-speed analog signal generation
and processing. In particular, the MZM insertion loss (IL),
bandwidth, half-wave voltage (Vπ ), and dynamic ER have
been considered.

The InP platform stands out for the available optical
elements, as it allows a monolithic integration from the laser to
PD. For this reason, InP PICs do not require optical I/O, and
can thus avoid the associated optical losses while reducing
the complexity of chip packaging. The SOI platform lacks
SOAs and lasers, hence it requires at least managing a laser
input. Nonetheless, the advancements in hybrid-integration
of III-V lasers on silicon PICs give practical solutions to
simplify packaging and reduce insertion losses [35]. The LNOI
platform lacks both light sources and integrated PDs, thus
requiring the handling of optical I/O for both inputs and
outputs. Despite being the most recent platform, the successful
hybrid integration of both lasers and PDs in LNOI has been
recently reported [40], [41].

The footprint of photonic devices impacts directly both
the degree of architectural complexity that can be managed
in a PIC and the CAPEX for chip fabrication. Combining
compactness, CMOS compatibility, and substrate availability
and cost, the SOI process dominates when considering a large-
scale production of complex integrated chips.

The lithium niobate technology is a leap forward
concerning the modulator metrics. LNOI waveguides have the
lowest propagation losses, with demonstrated values below
0.1 dB/cm [40]. This allows LNOI modulators, whose length
falls in the tens of mm range, to have a loss as low as
1 dB per element, four times lower compared to InP and SOI
modulators. Microstructured LNOI electrodes guarantee an
excellent matching between the effective index of the electrical
signal and the group index of the optical signal, significantly
increasing the bandwidth of modulators, in excess of 100
GHz [37]. The low half-wave voltage, the high linearity, and
the dynamic ER of LNOI modulators make them the best
option for low-power and high-speed analog signal generation.

IV. PERFORMANCE ON PHOTONIC NEUROMORPHIC
PROCESSORS

Many photonic neuromorphic architectures can be realized
stemming from the basic high-speed MZM discussed in
Sec. II. The recent literature reports various photonic
configurations able to implement different DNNs, most of
them focusing either on fully-connected or convolutional
layers [3], [13], [14]. The two main strategies to physically
realize these layers rely either on coherent architectures,
such as tunable interferometer meshes, or WDM devices,
which encode inputs in multiple wavelengths and use filters
to act selectively on them. These architectures usually
exploit slowly-varying thermally-tunable elements to leverage
the parallelism of photonics and perform the weighing
part of several neurons in parallel on fast-varying inputs,
which are produced by high-speed MZMs. Nonetheless,
these approaches have a limited scalability imposed by the
circuit complexity and the associated losses, which grow
quadratically with the number of inputs [49]. In practical
devices, the number of inputs per layer does not exceed ten,
while projections on future devices are limited to 64 ports per
chip [17].

To quantify the impact of different integration technologies
on photonic neuromorphic devices, we have numerically
evaluated the performance of a specific device: the Photonic
Electronic Multiply-Accumulate Neuron (PEMAN) [17]. We
have chosen this device as its processing core relies on two
cascaded high-speed MZMs. Moreover, it allows to process
a number of inputs per neuron ranging from hundreds to a
thousand, thanks to its electro-optic strategy.

The PEMAN is a precision-scalable multiply-accumulate
(MAC) architecture, able to perform in the analog
domain all the operations required by an artificial neuron,
i.e., multiplications, accumulations, and application of a
nonlinearity. Fig. 3 represents the PEMAN in the case where
N = 1, i.e., with one output branch. This optoelectronic
neuron performs multiplications at high speed and low
power exploiting a single-output and an X-coupled MZM
that respectively impress neuron inputs and weights in the
amplitude of a continuous lightwave with a time serial strategy.
The X-coupled MZM, able to impress both positive and
negative weights, is connected to a balanced photodetector.
The output photocurrent encodes the multiplication results,
which are accumulated within the front-end analog Electronic
Integrated Circuit (EIC). A final nonlinearity is imposed
within the Analog-to-Digital Converter (ADC), designed with
a nonlinear characteristic. The obtained output can be readily
re-used by the same structure, allowing to compute multiple
DNN layers without cascadability issues.

The structure can be scaled to perform the computations
of N neurons in parallel by broadcasting the analog signal
generated by the input modulator to N weighting units. Fig. 3
depicts this version of the device, referred to as Tensor-
PEMAN [50]. The Tensor-PEMAN has an N-time advantage
in the MAC rate: when operating at a given frequency, N MAC
in parallel are executed. Moreover, the energy consumption
per MAC operation is reduced, as the laser and the input
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Fig. 4: Bit resolution as a function of speed for different
technologies and parallel PEMAN neurons. Solid/dashed lines
refer to the lower/upper axis.

modulator are shared among the N weighting elements. This
comes at the cost of a more complex device and a lower optical
power budget due to the power splitter, which translates into a
lower resolution, as discussed in Sec. II. The Tensor-PEMAN
computes the output of N neurons at a time, storing the N
outputs on a local buffer to be used as inputs for the successive
layer. In this way, the inputs for the computations within a
layer do not need to be loaded at every cycle.

We have numerically evaluated the performance of the
single PEMAN and the 4-neuron Tensor-PEMAN (N =
4) realized in different photonic platforms through the
Lumerical INTERCONNECT environment. To this aim, we
have performed frequency-dependant simulations evaluating
three metrics: (i) the output signal resolution, (ii) the energy
consumption (in pJ/MAC), and (iii) the footprint efficiency
(in GMAC/s/mm2). The results are summarized in Fig. 4, 5,
and 6, respectively. In the plots, the lower horizontal axis
refers to the MAC rate of the single case (equivalent to
the operating frequency of both the single-neuron and the 4-
neuron instances), while the upper axis refers to the total MAC
rate of the scaled structure. The maximum speed has been
chosen to be 56/224 GMAC/s for the single-neuron and the 4-
neuron instances, respectively, a value matching the bandwidth
limitations of the SOI devices, whose output signals drown in
noise beyond this point. The SOI devices have been simulated
with the Imec iSiPP50G process [51], for the LNOI devices
the parameters reported in [37] have been considered, while
the InP implementations were simulated according to [45].

Fig. 4 shows the bit resolution as a function of
the MAC rate. Time-domain simulations have been
performed considering a dataset of 1024 input-weight
pair multiplications, taking the photocurrent waveform as an
output. The time traces have been analyzed to obtain the
standard deviation of the multiplication error σ, then used to

Fig. 5: Energy consumption as a function of speed for different
technologies and parallel PEMAN neurons. Solid/dashed lines
refer to the lower/upper axis.

derive the bit resolution with a 6σ metric. In all platforms,
the resolution decreases with the MAC rate as the PEMAN
trades off speed with resolution. LNOI devices achieve the
best performance especially at high speed, with 4.3 bits at 56
GMAC/s for N = 1 and 3.6 bits at 224 GMAC/s for N = 4.
The InP technology provides a rather stable ENOB, between
3 and 4 for both structures and all considered operating
speeds. The relatively low resolution at lower frequencies
is due to the low dynamic ER of the MZM and the high
RIN of the laser, respectively. However, the InP device is
mildly affected by frequency effects due to the large 3-dB
bandwidth of the InP modulator, thus generating a quite
stable resolution. Conversely, the finite bandwidth of the SOI
devices particularly limits their resolution at higher speed.
For the single neuron case, the ENOB drops from 6.1 bits at
10 GMAC/s to 2.1 at 56 GMAC/s. In the 4-neuron case, the
SOI signal drowns in noise, i.e., goes below 1 ENOB, for the
highest rate of 224 GMAC/s.

The energy consumption (in pJ/MAC) is depicted in Fig. 5
as a function of the speed. It has been evaluated considering
81 mW for the laser, 13 mW per EIC, 180 mW per high-
speed DAC, and 400 mW per RF amplifier [17]. The RF
amplifiers dissipate the highest share of power, which justifies
the largest energy consumption for SOI devices. Conversely,
both LNOI and InP modulators are compatible with direct
DAC driving, thus they avoid the use of RF drivers and
achieve the same energy consumption. All curves show a
decreasing behavior for increasing speed, due to the more
efficient spread of static energy dissipation. Indeed, the lowest
energy consumption is achieved at a working frequency of
56 GHz (224 GMAC/s for the 4-neuron instance), where
the single LNOI/InP device consumes just 8.1 pJ/MAC, a
nearly three-times advantage compared to SOI, which requires
22 pJ/MAC. The Tensor-PEMAN shares laser and input MZM
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Fig. 6: Footprint efficiency as a function of speed for different
technologies and parallel PEMAN neurons. Solid/dashed lines
refer to the lower/upper axis.

among the 4 weighting structures, hence the power per MAC
operation can be further reduced. This configuration has a
power consumption of 13.2 pJ/MAC and 4.6 pJ/MAC for the
SOI and LNOI/InP devices, respectively.

Results in terms of footprint efficiency as a function of
MAC rate are shown in Fig. 6. This metric gives a deeper
insight into the neuromorphic device performance compared
to plain area usage since it quantifies how efficiently the
chip is used to produce MAC operations per second [52].
The reported footprint efficiency values have been derived
as the number of MAC/s per unit area of the photonic
chip. For each design, this value linearly grows with the
MAC rate. All Tensor-PEMAN implementations achieve a
higher footprint efficiency with respect to the single case
since the area occupied by the laser and the input MZM is
shared by more neurons. At the highest working frequency
of 56 GHz, the LNOI, InP, and SOI PEMAN achieve 2.1,
4.1, and 18.6 GMAC/s/mm2, respectively. The much larger
footprint efficiency of the SOI platform is mainly due to
the larger index contrast and compactness of the MZM.
Regarding the 4-neuron Tensor-PEMAN implementation, the
LNOI, InP, and SOI devices reach the values of 3.4, 6.6, and
29.6 GMAC/s/mm2, respectively. Also in this case the SOI
platform stands out, with a 4× advantage with respect to InP
and an almost 9× increase compared to LNOI.

V. CONCLUSIONS

The recent advances and demonstrations in photonic
neuromorphic computing support the speed, latency, and
power consumption advantages of optical AI accelerators.
Moreover, such novel photonic hardware has the potential
to enable non-conventional AI paradigms. Having proven
the working principle, the current challenge is to provide
a path toward real-world implementations of photonic

analog processors. In this paper, we have discussed how
different photonic technologies affect the performance and
the scalability of neuromorphic processors, in order to gain a
deeper understanding of the most suited enabling technologies.

Our analysis focused on SOI, LNOI, and InP photonic
integration platforms, as they provide sufficiently mature
building blocks and in particular high-speed modulators,
which are essential elements to exploit the bandwidth and
latency advantages of photonic neuromorphic approaches. We
motivated the use of analog photonics in this context and
reported a theoretical analysis on the achievable resolution
of MZM-based basic elements, depending on noise sources
and distortions. We have then discussed the strengths
and weaknesses of the three integration platforms. LNOI
modulators overcome the others for each aspect except the
footprint. A monolithic integration of all optical components
can be achieved only by the InP technology, while the SOI
platform has the most compact photonic structures and is the
only CMOS compatible.

To assess how the different photonic platforms affect the
performance of neuromorphic devices, we have numerically
evaluated the operation of the PEMAN and the 4-neuron
Tensor-PEMAN devices when designed with a specific
technology. We have considered three performance metrics,
i.e., bit resolution, energy consumption, and footprint
efficiency as a function of the device MAC rate. Notably, all
the Tensor-PEMAN implementations achieve a speed, power
consumption, and footprint advantage compared to the single-
neuron instance leveraging the optical parallelism, with an
unavoidable resolution reduction due to the tighter power
budget.

The best resolution has been achieved by the LNOI
platform, with 4.3 bits at 56 GMAC/s for the single
PEMAN and 3.6 bits at 224 GMAC/s for the 4-neuron
instance. For energy consumption, both InP and LNOI perform
best, requiring only 13.2 pJ/MAC and 4.6 pJ/MAC at the
highest speed for the single and 4-neuron implementations,
respectively. The SOI reduced energy efficiency arises from the
need for RF amplifiers to drive the modulators, while LNOI
and InP MZMs allow for direct DAC driving. Nonetheless,
the SOI stands out for footprint efficiency, achieving 18.6 and
29.6 GMAC/s/mm2 at the highest speed for the single and
4-neuron instances, respectively. The SOI achieves a 4-times
advantage compared to InP, and nearly an order of magnitude
over the LNOI.

These results highlight the features of each platform, with
no technology clearly prevailing in the overall picture. Up to
date, only the priority deriving from a specific application
can delineate which platform to use. The LNOI will be
the technology of choice if high-speed and high-resolution
neuromorphic processing is required. InP provides the unique
feature of monolithic integration, which avoids the need for
optical I/O resulting in a simplified PIC design. However, in
the roadmap for a wide deployment of photonic neuromorphic
processors, SOI is the only technology that currently supports
cost-effective and large-scale production. We expect that the
advances in the performance, maturity, and robustness of the
various platforms provide a clearer vision concerning the most
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suitable photonic analog computing devices in the near future.
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