19,288 research outputs found

    Information-disturbance tradeoff in quantum measurements

    Full text link
    We present a simple information-disturbance tradeoff relation valid for any general measurement apparatus: The disturbance between input and output states is lower bounded by the information the apparatus provides in distinguishing these two states.Comment: 4 Pages, 1 Figure. Published version (reference added and minor changes performed

    Anti-transpirant effects on vine physiology, berry and wine composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy

    Get PDF
    In viticulture, global warming requires reconsideration of current production models. At the base of this need there are some emerging phenomena: modification of phenological phases; acceleration of the maturation process of grapes, with significant increases in the concentration of sugar musts; decoupling between technological grape maturity and phenolic maturity. The aim of our study was to evaluate the effect of a natural anti-transpirant on grapevine physiology, berry, and wine composition of Aglianico cultivar. For two years, Aglianico vines were treated at veraison with the anti-transpirant Vapor Gard and compared with a control sprayed with only water. A bunch thinning was also applied to both treatments. The effectiveness of Vapor Gard were assessed through measurements of net photosynthesis and transpiration and analyzing the vegetative, productive and qualitative parameters. The results demonstrate that the application of antitranspirant reduced assimilation and transpiration rate, stomatal conductance, berry sugar accumulation, and wine alcohol content. No significant differences between treatments were observed for other berry and wine compositional parameters. This method may be a useful tool to reduce berry sugar content and to produce wines with a lower alcohol content

    Sub-Heisenberg estimation strategies are ineffective

    Full text link
    In interferometry, sub-Heisenberg strategies claim to achieve a phase estimation error smaller than the inverse of the mean number of photons employed (Heisenberg bound). Here we show that one can achieve a comparable precision without performing any measurement, just using the large prior information that sub-Heisenberg strategies require. For uniform prior (i.e. no prior information), we prove that these strategies cannot achieve more than a fixed gain of about 1.73 over Heisenberg-limited interferometry. Analogous results hold for arbitrary single-mode prior distributions. These results extend also beyond interferometry: the effective error in estimating any parameter is lower bounded by a quantity proportional to the inverse expectation value (above a ground state) of the generator of translations of the parameter.Comment: 4 pages, 2 figures, revised version that was publishe

    Robust strategies for lossy quantum interferometry

    Full text link
    We give a simple multiround strategy that permits to beat the shot noise limit when performing interferometric measurements even in the presence of loss. In terms of the average photon number employed, our procedure can achieve twice the sensitivity of conventional interferometric ones in the noiseless case. In addition, it is more precise than the (recently proposed) optimal two-mode strategy even in the presence of loss.Comment: 4 pages, 3 figure

    Single-stage electrohydraulic servosystem for actuating on airflow valve with frequencies to 500 hertz

    Get PDF
    An airflow valve and its electrohydraulic actuation servosystem are described. The servosystem uses a high-power, single-stage servovalve to obtain a dynamic response beyond that of systems designed with conventional two-stage servovalves. The electrohydraulic servosystem is analyzed and the limitations imposed on system performance by such nonlinearities as signal saturations and power limitations are discussed. Descriptions of the mechanical design concepts and developmental considerations are included. Dynamic data, in the form of sweep-frequency test results, are presented and comparison with analytical results obtained with an analog computer model is made

    No Fermionic Wigs for BPS Attractors in 5 Dimensions

    Get PDF
    We analyze the fermionic wigging of 1/2-BPS (electric) extremal black hole attractors in N=2, D=5 ungauged Maxwell-Einstein supergravity theories, by exploiting anti-Killing spinors supersymmetry transformations. Regardless of the specific data of the real special geometry of the manifold defining the scalars of the vector multiplets, and differently from the D=4 case, we find that there are no corrections for the near--horizon attractor value of the scalar fields; an analogous result also holds for 1/2-BPS (magnetic) extremal black string. Thus, the attractor mechanism receives no fermionic corrections in D=5 (at least in the BPS sector).Comment: 24 pages, LaTeX2

    Where in the String Landscape is Quintessence

    Full text link
    We argue that quintessence may reside in certain corners of the string landscape. It arises as a linear combination of internal space components of higher rank forms, which are axion-like at low energies, and may mix with 4-forms after compactification of the Chern-Simons terms to 4D due to internal space fluxes. The mixing induces an effective mass term, with an action which {\it preserves} the axion shift symmetry, breaking it spontaneously after the background selection. With several axions, several 4-forms, and a low string scale, as in one of the setups already invoked for dynamically explaining a tiny residual vacuum energy in string theory, the 4D mass matrix generated by random fluxes may have ultralight eigenmodes over the landscape, which are quintessence. We illustrate how this works in simplest cases, and outline how to get the lightest mass to be comparable to the Hubble scale now, H0∼10−33eVH_0 \sim 10^{-33} {\rm eV}. The shift symmetry protects the smallest mass from perturbative corrections in field theory. Further, if the ultralight eigenmode does not couple directly to any sector strongly coupled at a high scale, the non-perturbative field theory corrections to its potential will also be suppressed. Finally, if the compactification length is larger than the string length by more than an order of magnitude, the gravitational corrections may remain small too, even when the field value approaches MPlM_{Pl}.Comment: 8 pages RevTeX; added references, matches published versio
    • …
    corecore