12,020 research outputs found

    Size-independent Young's modulus of inverted conical GaAs nanowire resonators

    Full text link
    We explore mechanical properties of top down fabricated, singly clamped inverted conical GaAs nanowires. Combining nanowire lengths of 2-9 μ\mum with foot diameters of 36-935 nm yields fundamental flexural eigenmodes spanning two orders of magnitude from 200 kHz to 42 MHz. We extract a size-independent value of Young's modulus of (45±\pm3) GPa. With foot diameters down to a few tens of nanometers, the investigated nanowires are promising candidates for ultra-flexible and ultra-sensitive nanomechanical devices

    Mott metal-insulator transition on compressible lattices

    Full text link
    The critical properties of the finite temperature Mott endpoint are drastically altered by a coupling to crystal elasticity, i.e., whenever it is amenable to pressure tuning. Similar as for critical piezoelectric ferroelectrics, the Ising criticality of the electronic system is preempted by an isostructural instability, and long-range shear forces suppress microscopic fluctuations. As a result, the endpoint is governed by Landau criticality. Its hallmark is thus a breakdown of Hooke's law of elasticity with a non-linear strain-stress relation characterized by a mean-field exponent. Based on a quantitative estimate, we predict critical elasticity to dominate the temperature range DeltaT/Tc ~ 8% close to the Mott endpoint of kappa-(BEDT-TTF)2X.Comment: 4 pages, 6 figure

    A Field-Induced Re-Entrant Novel Phase and A Ferroelectric-Magnetic Order Coupling in HoMnO3

    Full text link
    A re-entrant novel phase has been observed in the hexagonal ferroelectric HoMnO3 in the presence of magnetic fields, in the temperature ranges defined by the plateau of the dielectric constant anomaly. The dielectric plateau evolves with fields from a narrow sharp dielectric peak at the Mn-spin rotation transition at 32.8 K in zero magnetic field. Such a field-induced dielectric plateau anomaly appears both in the temperature sweep at a constant field and in the field sweep at a constant temperature without detectable hysteresis. This is attributed to the indirect coupling between the ferroelectric and antiferromagnetic orders, arising from an antiferromagnetic domain wall effect, where the magnetic order parameter of the Mn subsystem has to change sign across the ferroelectric domain wall in the compound, that influences the ferroelectric domains via a local magnetostrictive effect

    Optical doping and damage formation in AIN by Eu implantation

    Get PDF
    AlN films grown on sapphire were implanted with 300 keV Eu ions to fluences from 3×1014 to 1.4×1017 atoms/cm2 in two different geometries: “channeled” along the c-axis and “random” with a 10° angle between the ion beam and the surface normal. A detailed study of implantation damage accumulation is presented. Strong ion channeling effects are observed leading to significantly decreased damage levels for the channeled implantation within the entire fluence range. For random implantation, a buried amorphous layer is formed at the highest fluences. Red Eu-related photoluminescence at room temperature is observed in all samples with highest intensities for low damage samples (low fluence and channeled implantation) after annealing. Implantation damage, once formed, is shown to be stable up to very high temperatures.FCT - POCI/FIS/57550/2004FCT - PTDC/FIS/66262/2006FCT - PTDC/CTM/100756/200

    Runtime Distributions and Criteria for Restarts

    Full text link
    Randomized algorithms sometimes employ a restart strategy. After a certain number of steps, the current computation is aborted and restarted with a new, independent random seed. In some cases, this results in an improved overall expected runtime. This work introduces properties of the underlying runtime distribution which determine whether restarts are advantageous. The most commonly used probability distributions admit the use of a scale and a location parameter. Location parameters shift the density function to the right, while scale parameters affect the spread of the distribution. It is shown that for all distributions scale parameters do not influence the usefulness of restarts and that location parameters only have a limited influence. This result simplifies the analysis of the usefulness of restarts. The most important runtime probability distributions are the log-normal, the Weibull, and the Pareto distribution. In this work, these distributions are analyzed for the usefulness of restarts. Secondly, a condition for the optimal restart time (if it exists) is provided. The log-normal, the Weibull, and the generalized Pareto distribution are analyzed in this respect. Moreover, it is shown that the optimal restart time is also not influenced by scale parameters and that the influence of location parameters is only linear

    Renormalization of the BCS-BEC crossover by order parameter fluctuations

    Full text link
    We use the functional renormalization group approach with partial bosonization in the particle-particle channel to study the effect of order parameter fluctuations on the BCS-BEC crossover of superfluid fermions in three dimensions. Our approach is based on a new truncation of the vertex expansion where the renormalization group flow of bosonic two-point functions is closed by means of Dyson-Schwinger equations and the superfluid order parameter is related to the single particle gap via a Ward identity. We explicitly calculate the chemical potential, the single-particle gap, and the superfluid order parameter at the unitary point and compare our results with experiments and previous calculations.Comment: 5 pages, 3 figure

    Some exact non-vacuum Bianchi VI0 and VII0 instantons

    Full text link
    We report some new exact instantons in general relativity. These solutions are K\"ahler and fall into the symmetry classes of Bianchi types VI0 and VII0, with matter content of a stiff fluid. The qualitative behaviour of the solutions is presented, and we compare it to the known results of the corresponding self-dual Bianchi solutions. We also give axisymmetric Bianchi VII0 solutions with an electromagnetic field.Comment: latex, 15 pages with 3 eps figure

    The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric Calibration, and the Hubble Constant

    Full text link
    We describe a program of surface brightness fluctuation (SBF) measurements for determining galaxy distances. This paper presents the photometric calibration of our sample and of SBF in general. Basing our zero point on observations of Cepheid variable stars, we find that the absolute SBF magnitude in the Kron-Cousins I band correlates well with the mean (V-I)o color of a galaxy according to M_Ibar = (-1.74 +/- 0.07) + (4.5 +/- 0.25) [ (V-I)o - 1.15 ] for 1.0 < (V-I) < 1.3. This agrees well with theoretical estimates from stellar population models. Comparisons between SBF distances and a variety of other estimators, including Cepheid variable stars, the Planetary Nebula Luminosity Function (PNLF), Tully-Fisher (TF), Dn-sigma, SNII, and SNIa, demonstrate that the calibration of SBF is universally valid and that SBF error estimates are accurate. The zero point given by Cepheids, PNLF, TF (both calibrated using Cepheids), and SNII is in units of Mpc; the zero point given by TF (referenced to a distant frame), Dn-sigma and SNIa is in terms of a Hubble expansion velocity expressed in km/s. Tying together these two zero points yields a Hubble constant of H_0 = 81 +/- 6 km/s/Mpc. As part of this analysis, we present SBF distances to 12 nearby groups of galaxies where Cepheids, SNII, and SNIa have been observed.Comment: 29 pages plus 8 figures; LaTeX (AASTeX) uses aaspp4.sty (included); To appear in The Astrophysical Journal, 1997 February 1 issue; Compressed PostScript available from ftp://mars.tuc.noao.edu/sbf

    An Agent-Based Model of Collective Emotions in Online Communities

    Full text link
    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended introduction, clarification
    • …
    corecore