2,919 research outputs found

    Two- and three-point functions in two-dimensional Landau-gauge Yang-Mills theory: Continuum results

    Full text link
    We investigate the Dyson-Schwinger equations for the gluon and ghost propagators and the ghost-gluon vertex of Landau-gauge gluodynamics in two dimensions. While this simplifies some aspects of the calculations as compared to three and four dimensions, new complications arise due to a mixing of different momentum regimes. As a result, the solutions for the propagators are more sensitive to changes in the three-point functions and the ansaetze used for them at the leading order in a vertex a expansion. Here, we therefore go beyond this common truncation by including the ghost-gluon vertex self-consistently for the first time, while using a model for the three-gluon vertex which reproduces the known infrared asymptotics and the zeros at intermediate momenta as observed on the lattice. A separate computation of the three-gluon vertex from the results is used to confirm the stability of this behavior a posteriori. We also present further arguments for the absence of the decoupling solution in two dimensions. Finally, we show how in general the infrared exponent kappa of the scaling solutions in two, three and four dimensions can be changed by allowing an angle dependence and thus an essential singularity of the ghost-gluon vertex in the infrared.Comment: 24 pages; added references, improved choices of parameters for vertex models; identical to version published in JHE

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Measurement of Rashba and Dresselhaus spin-orbit magnetic fields

    Full text link
    Spin-orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state systems, the resulting spin-orbit fields are referred to as Dresselhaus or Rashba fields, depending on whether the electric fields originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both contributions in a single sample. Here we show that both fields can be measured by optically monitoring the angular dependence of the electrons' spin precession on their direction of movement with respect to the crystal lattice. Furthermore, we demonstrate spin resonance induced by the spin-orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it can be used universally to characterise spin-orbit interactions in semiconductors, facilitating the design of spintronic devices

    The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence

    Get PDF
    Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD

    Wisdom of groups promotes cooperation in evolutionary social dilemmas

    Get PDF
    Whether or not to change strategy depends not only on the personal success of each individual, but also on the success of others. Using this as motivation, we study the evolution of cooperation in games that describe social dilemmas, where the propensity to adopt a different strategy depends both on individual fitness as well as on the strategies of neighbors. Regardless of whether the evolutionary process is governed by pairwise or group interactions, we show that plugging into the "wisdom of groups" strongly promotes cooperative behavior. The more the wider knowledge is taken into account the more the evolution of defectors is impaired. We explain this by revealing a dynamically decelerated invasion process, by means of which interfaces separating different domains remain smooth and defectors therefore become unable to efficiently invade cooperators. This in turn invigorates spatial reciprocity and establishes decentralized decision making as very beneficial for resolving social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific Report

    Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate interpretations of cardiac functions require precise structural models of the myocardium, but the latter is not available always and for all species. Although scaling or substitution of myocardial fiber information from alternate species has been used in cardiac functional modeling, the validity of such practice has not been tested.</p> <p>Methods</p> <p>Fixed mouse (n = 10), rabbit (n = 6), and sheep (n = 5) hearts underwent diffusion tensor imaging (DTI). The myocardial structures in terms of the left ventricular fiber orientation helix angle index were quantitatively compared between the mouse rabbit and sheep hearts.</p> <p>Results</p> <p>The results show that significant fiber structural differences exist between any two of the three species. Specifically, the subepicardial fiber orientation, and the transmural range and linearity of fiber helix angles are significantly different between the mouse and either rabbit or sheep. Additionally, a significant difference was found between the transmural helix angle range between the rabbit and sheep. Across different circumferential regions of the heart, the fiber orientation was not found to be significantly different.</p> <p>Conclusions</p> <p>The current study indicates that myocardial structural differences exist between different size hearts. An immediate implication of the present findings for myocardial structural or functional modeling studies is that caution must be exercised when extrapolating myocardial structures from one species to another.</p
    corecore