145 research outputs found

    Пути улучшения использования организационно-комбинационного потенциала управленческого труда в современной экономике на основе более точного учёта в денежной форме его затрат и результатов

    Get PDF
    В задачу нашего исследования не входит анализ механизмов и итогов радикальных рыночных реформ 90-х годов в целом. Мы остановимся только на исследовании ценовых отношений и деформации оплаты труда руководителей и специалистов. Но все же, хотя бы кратко, нужно дать характеристику радикальных рыночных реформ в целом, так как часть (цены и зарплату управленцев) нельзя понять в отрыве от него

    Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are important players in tissue homeostasis and regeneration owing to their immunomodulatory potential and release of trophic factors that promote healing. They have been increasingly used in clinical trials to treat multiple conditions associated with inflammation and tissue damage such as graft versus host disease, orthopedic injuries and cardiac and liver diseases. Recent evidence demonstrates that their beneficial effects are derived, at least in part, from their secretome. In particular, data from animal models and first-in-man studies indicate that MSC-derived extracellular vesicles (MSC-EVs) can exert similar therapeutic potential as their cells of origin. MSC-EVs are membranous structures loaded with proteins, lipids, carbohydrates and nucleic acids, which play an important role in cell-cell communication and may represent an attractive alternative for cell-based therapy. In this article we summarize recent advances in the use of MSC-EVs for tissue repair. We highlight several isolation and characterization approaches used to enrich MSC-derived EVs. We discuss our current understanding of the relative contribution of the MSC-EVs to the immunomodulatory and regenerative effects mediated by MSCs and MSC secretome. Finally we highlight the challenges and opportunities, which come with the potential use of MSC-EVs as cell free therapy for conditions that require tissue repair

    A kaleidoscopic view of extracellular vesicles in lysosomal storage disorders

    Get PDF
    Extracellular vesicles (EVs) are a heterogeneous population of stable lipid membrane particles that play a critical role in the regulation of numerous physiological and pathological processes. EV cargo, which includes lipids, proteins, and RNAs including miRNAs, is affected by the metabolic status of the parental cell. Concordantly, abnormalities in the autophagic-endolysosomal pathway, as seen in lysosomal storage disorders (LSDs), can affect EV release as well as EV cargo. LSDs are a group of over 70 inheritable diseases, characterized by lysosomal dysfunction and gradual accumulation of undigested molecules. LSDs are caused by single gene mutations that lead to a deficiency of a lysosomal protein or lipid. Lysosomal dysfunction sets off a cascade of alterations in the endolysosomal pathway that can affect autophagy and alter calcium homeostasis, leading to energy imbalance, oxidative stress, and apoptosis. The pathophysiology of these diseases is very heterogenous, complex, and currently incompletely understood. LSDs lead to progressive multisystemic symptoms that often include neurological deficits. In this review, a kaleidoscopic overview will be given on the roles of EVs in LSDs, from their contribution to pathology and diagnostics to their role as drug delivery vehicles. Furthermore, EV cargo and surface engineering strategies will be discussed to show the potential of EVs in future LSD treatment, both in the context of enzyme replacement therapy, as well as future gene editing strategies like CRISPR/Cas. The use of engineered EVs as drug delivery vehicles may mask therapeutic cargo from the immune system and protect it from degradation, improving circulation time and targeted delivery

    Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation

    Get PDF
    Bone remodeling is a continuous physiological process that requires constant generation of new osteoblasts from mesenchymal stem cells (MSCs). Differentiation of MSCs to osteoblast requires a metabolic switch from glycolysis to increased mitochondrial respiration to ensure the sufficient energy supply to complete this process. As a consequence of this increased mitochondrial metabolism, the levels of endogenous reactive oxygen species (ROS) rise. In the current study we analyzed the role of forkhead box O3 (FOXO3) in the control of ROS levels in human MSCs (hMSCs) during osteogenic differentiation. Treatment of hMSCs with H2O2 induced FOXO3 phosphorylation at Ser294 and nuclear translocation. This ROS-mediated activation of FOXO3 was dependent on mitogen-activated protein kinase 8 (MAPK8/JNK) activity. Upon FOXO3 downregulation, osteoblastic differentiation was impaired and hMSCs lost their ability to control elevated ROS levels. Our results also demonstrate that in response to elevated ROS levels, FOXO3 induces autophagy in hMSCs. In line with this, impairment of autophagy by autophagy-related 7 (ATG7) knockdown resulted in a reduced capacity of hMSCs to regulate elevated ROS levels, together with a reduced osteoblast differentiation. Taken together our findings are consistent with a model where in hMSCs, FOXO3 is required to induce autophagy and thereby reduce elevated ROS levels resulting from the increased mitochondrial respiration during osteoblast differentiation. These new molecular insights provide an important contribution to our better understanding of bone physiology

    Structure of the Endonuclease Domain of MutL: Unlicensed to Cut

    Get PDF
    DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn2+-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.American Cancer Society (Research Professor)Natural Sciences and Engineering Research Council of Canada (NSERC scholarship)National Institutes of Health (U.S.) (CA21615)National Institutes of Health (U.S.) (GM45190)Natural Sciences and Engineering Research Council of Canada (NSERC, 288295)Deutsche Forschungsgemeinschaft (FR-1495/4-1)University of Michigan (Start-up funds

    Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration

    Get PDF
    Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic

    Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration

    Get PDF
    Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic

    Mesenchymal stromal/stem cells promote intestinal epithelium regeneration after chemotherapy-induced damage

    Get PDF
    BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for leukemia and a range of non-malignant disorders. The success of the therapy is hampered by occurrence of acute graft-versus-host disease (aGvHD); an inflammatory response damaging recipient organs, with gut, liver, and skin being the most susceptible. Intestinal GvHD injury is often a life-threatening complication in patients unresponsive to steroid treatment. Allogeneic mesenchymal stromal/stem cell (MSC) infusions are a promising potential treatment for steroid-resistant aGvHD. Data from our institution and others demonstrate rescue of approximately 40-50% of aGvHD patients with MSCs in Phase I, II studies and minor side effects. Although promising, better understanding of MSC mode of action and patient response to MSC-based therapy is essential to improve this lifesaving treatment. METHODS: Single cell human small intestine organoids were embedded in Matrigel, grown for 5 days and treated with busulfan for 48 h. Organoids damaged by treatment with busulfan or control organoids were co-cultured with 5000, 10,000, and 50,000 MSCs for 24 h, 48 h or 7 days and the analyses such as surface area determination, proliferation and apoptosis assessment, RNA sequencing and proteomics were performed. RESULTS: Here, we developed a 3D co-culture model of human small intestinal organoids and MSCs, which allows to study the regenerative effects of MSCs on intestinal epithelium in a more physiologically relevant setting than existing in vitro systems. Using this model we mimicked chemotherapy-mediated damage of the intestinal epithelium. The treatment with busulfan, the chemotherapeutic commonly used as conditioning regiment before the HSCT, affected pathways regulating epithelial to mesenchymal transition, proliferation, and apoptosis in small intestinal organoids, as shown by transcriptomic and proteomic analysis. The co-culture of busulfan-treated intestinal organoids with MSCs reversed the effects of busulfan on the transcriptome and proteome of intestinal epithelium, which we also confirmed by functional evaluation of proliferation and apoptosis. CONCLUSIONS: Collectively, we demonstrate that our in vitro co-culture system is a new valuable tool to facilitate the investigation of the molecular mechanisms behind the therapeutic effects of MSCs on damaged intestinal epithelium. This could benefit further optimization of the use of MSCs in HSCT patients

    Mesenchymal stem/stromal cells-derived extracellular vesicles as a potentially more beneficial therapeutic strategy than MSC-based treatment in a mild metabolic osteoarthritis model

    Get PDF
    BACKGROUND: Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) hold promise as a disease modifying treatment in osteoarthritis (OA). Obesity, and its associated inflammation, contribute to OA development and metabolic OA represents a specific and significant group of the OA patient population. Given their immunomodulatory properties, MSC and MSC-EVs are especially interesting for this group of patients as a therapeutic option. Here, we were the first to compare the therapeutic efficacy of MSCs and MSC-EVs in a mild OA model taking these metabolic aspects into consideration. METHODS: Male Wistar-Han rats (Crl:WI(Han) (n = 36) were fed a high fat diet for 24 weeks, with unilateral induction of OA by groove surgery after 12 weeks. Eight days after surgery rats were randomized in three treatment groups receiving MSCs, MSC-EVs or vehicle injection. Pain-associated behavior, joint degeneration, and local and systemic inflammation were measured. RESULTS: We demonstrated that despite not having a significant therapeutic effect, MSC-EV treatment results in lower cartilage degeneration, less pain behaviour, osteophytosis and joint inflammation, than MSC treatment. Suggesting that MSC-EVs could be a more promising therapeutic strategy than MSCs in this mild metabolic OA model. CONCLUSION: In summary, we find that MSC treatment has negative effects on the joint in metabolic mild OA. This is an essential finding for the significant group of patients with metabolic OA phenotype, and might help to understand why clinical translation of MSC treatment shows varying therapeutic efficacy thus far. Our results also suggest that MSC-EV-based treatment might be a promising option for these patients, however MSC-EV therapeutic efficacy will need improvement
    corecore