25 research outputs found

    PIASγ Is Required for Faithful Chromosome Segregation in Human Cells

    Get PDF
    BACKGROUND: The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not fully understood. PRINCIPAL FINDINGS: We identify PIASγ as a human E3 sumo ligase required for timely and efficient sister chromatid separation. In cells lacking PIASγ, normal metaphase plates form, but the spindle checkpoint is activated, leading to a prolonged metaphase block. Sister chromatids remain cohered even if cohesin is removed by depletion of hSgo1, because DNA catenations persist at centromeres. PIASγ-depleted cells cannot properly localize Topoisomerase II at centromeres or in the cores of mitotic chromosomes, providing a functional link between PIASγ and Topoisomerase II. CONCLUSIONS: PIASγ directs Topoisomerase II to specific chromosome regions that require efficient removal of DNA catenations prior to anaphase. The lack of this activity activates the spindle checkpoint, protecting cells from non-disjunction. Because DNA catenations persist without PIASγ in the absence of cohesin, removal of catenations and cohesin rings must be regulated in parallel

    Arp2/3 Is a Negative Regulator of Growth Cone Translocation

    Get PDF
    Arp2/3 is an actin binding complex that is enriched in the peripheral lamellipodia of fibroblasts, where it forms a network of short, branched actin filaments, generating the protrusive force that extends lamellipodia and drives fibroblast motility. Although it has been assumed that Arp2/3 would play a similar role in growth cones, our studies indicate that Arp2/3 is enriched in the central, not the peripheral, region of growth cones and that the growth cone periphery contains few branched actin filaments. Arp2/3 inhibition in fibroblasts severely disrupts actin organization and membrane protrusion. In contrast, Arp2/3 inhibition in growth cones minimally affects actin organization and does not inhibit lamellipodia protrusion or de novo filopodia formation. Surprisingly, Arp2/3 inhibition significantly enhances axon elongation and causes defects in growth cone guidance. These results indicate that Arp2/3 is a negative regulator of growth cone translocation.National Institutes of Health (U.S.) (Grant 6895154)W. M. Keck Foundation (Distinguished Young Scholar Award

    The Disabled 1 Phosphotyrosine-Binding Domain Binds to the Internalization Signals of Transmembrane Glycoproteins and to Phospholipids

    Get PDF
    Disabled gene products are important for nervous system development in drosophila and mammals. In mice, the Dab1 protein is thought to function downstream of the extracellular protein Reln during neuronal positioning. The structures of Dab proteins suggest that they mediate protein-protein or protein-membrane docking functions. Here we show that the amino-terminal phosphotyrosine-binding (PTB) domain of Dab1 binds to the transmembrane glycoproteins of the amyloid precursor protein (APP) and low-density lipoprotein receptor families and the cytoplasmic signaling protein Ship. Dab1 associates with the APP cytoplasmic domain in transfected cells and is coexpressed with APP in hippocampal neurons. Screening of a set of altered peptide sequences showed that the sequence GYXNPXY present in APP family members is an optimal binding sequence, with approximately 0.5 μM affinity. Unlike other PTB domains, the Dab1 PTB does not bind to tyrosine-phosphorylated peptide ligands. The PTB domain also binds specifically to phospholipid bilayers containing phosphatidylinositol 4P (PtdIns4P) or PtdIns4,5P(2) in a manner that does not interfere with protein binding. We propose that the PTB domain permits Dab1 to bind specifically to transmembrane proteins containing an NPXY internalization signal

    Actin cytoskeleton: Thinking globally, actin’ locally

    No full text
    A class of proteins dubbed pipmodulins bind to and sequester the phospholipid PIP2 in the plasma membrane. Local release of PIP2 controls actin dynamics in specific subcellular regions and plays a critical role in regulating actin-based cell motility and morphogenesis.National Institutes of Health (U.S.) (Fellowship 7F32NS10655)National Institutes of Health (U.S.) (Grant GM58801

    Bilirubin as a Determinant for Altered Neurogenesis, Neuritogenesis, and Synaptogenesis

    No full text
    Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal j. - Fundacao para a Ciencia e a Tecnologia (FCT) ; FEDER [POCI/SAU-MMO/55955/2004, PTDC/SAU-NEU/64385/2006, SFRH/BPD/26390/2006, SFRH/BPD/26381/2006]; EU FP6 IP FunGenES [LSHG-CT 2003-503-494]; NINDS [RO1-NS049178]. - Contract grant sponsor: Fundacao para a Ciencia e a Tecnologia (FCT). Lisbon, Portugal and FEDER: contract grant numbers: POCI/SAU-MMO/55955/2004, PTDC/SAU-NEU/64385/2006, SFRH/BPD/26390/2006. and SFRH/BPD/26381/2006. Contract grant sponsor: EU FP6 IP Fu

    The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on Medium Spiny Neuron dendritic development

    No full text
    Medium spiny neurons (MSNs) are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of dopamine on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF) has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment
    corecore