76 research outputs found

    Dessalement en Espagne. Passé, présent et futur

    Full text link
    [Otros] Ce qui suit est un résumé de l'évolution du dessalement en Espagne, couvrant plus d'un demi-siècle d'histoire. Ce qui a commencé comme une solution pour résoudre les pénuries d'eau occasionnelles dans les îles où les ressources naturelles en eaux de surface et souterraines étaient rares, a gagné en pertinence avec les progrès technologiques, en réduisant les coûts de production et en minimisant l'impact sur l'environnement. Mais il y a quinze ans, le rythme normal de l'histoire s'est inversé avec la construction soudaine d'un nombre important d'usines de dessalement. La rapidité, et parfois la précipitation, impliquée dans de nombreuses décisions, a entraîné un déséquilibre entre les différents acteurs impliqués. Le temps et surtout les progrès technologiques ont clarifié la situation et la plupart des usines de dessalement construites ont réussi à trouver leur place, justifiant ainsi l'investissement réalisé. Mais il reste encore des étapes à franchir, notamment celle de l'intégration de ces installations dans les systèmes communs d'exploitation des ressources en eau. À cet égard, les consommateurs doivent accepter que les usines de dessalement en concurrence avec les ressources en eau traditionnelles améliorent considérablement la garantie d'approvisionnement et constituent en fait une nouvelle assurance de l'eau qui a effectivement un coût. Mais aujourd'hui et surtout à l'avenir, le dessalement en Espagne joue et continuera à jouer un rôle essentiel, en particulier dans la région sud-est de la Méditerranée et dans certaines des îles les plus touristiques. Ce qui suit est une brève histoire.[EN] A summary of the evolution of desalination in Spain, spanning over half a century of history, follows. What started as a solution to resolve occasional water shortages in islands where natural surface and ground water resources were scarce, has gained more relevance with technological advancements, less expensive production costs and at the same time minimizing the impact on the environment. But fifteen years ago, the normal pace of history underwent an about-turn with the sudden construction of a significant number of desalination plants. The speed, and on occasions the haste, involved in many of the decisions, brought about some imbalance between the different players that were involved. Time, and above all, technological advancement have clarified the situation, and most of the desalination plants that were built have managed to find their place, thus justifying the investment that was made. But there are still some stages to address, particularly that of integrating these plants in the joint water resource operation systems. In this regard, consumers must accept that desalination plants competing with traditional water resources, greatly improve the guarantee of supply, and in fact act as a new water insurance that, indeed, has a cost. Today however, and particularly in the future, desalination in Spain plays and will continue to play an essential role, especially in the southeast Mediterranean region and in some of the more touristic islands. The following is a brief history.Cabrera Marcet, E.; Estrela Monreal, T.; Lora-García, J. (2019). Desalination in Spain. Past, present and future. La Houille Blanche. (1):85-92. https://doi.org/10.1051/lhb/2019011S85921Cala A. (2013) - Spain's Desalination Ambitions Unravel. The New York Times, October 2013. Special Report: Business of Green.CEH (Centro De Estudios Hidrográficos) (2017) - Informe de Evaluación del Impacto del Cambio Climático en los Recursos Hídricos y Sequías en España (2015-2017), Madrid.EC (European Commission) (2016) - Energy prices and costs in Europe. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels 30.11.2016.EurEau (2017) - Europe's water in figures. An overview of the European drinking water and wastewater sectors. 2017 edition. The European Federation of National Water Associations.Lapuente, E. (2012). Full cost in desalination. A case study of the Segura River Basin. Desalination, 300, 40-45. doi:10.1016/j.desal.2012.06.002MCT (Mancomunidad de los Canales del Taibilla) (2013) - Gestión del servicio 2013. Ministerio de Agricultura, Alimentación y Medio Ambiente. MAC. Cartagena (Murcia).Ruiz N. (2005) - La salinidad del agua de riego y del suelo. IFAPA Centro Alameda del Obispo, Consejería de Innovación, Ciencia y Empresa. Junta de Andalucía. Sevilla.Torres M. (2008) - Evolución de los procesos de desalación en España. Libro La desalación en España. Aguas de la Cuenca Mediterránea, 2008. Depósito legal: M-27347-2008. Madrid., I , 81-113.Urrea M (2007) - Notas sobre tecnologías y costes de la desalación. Comunicación personal.Zarzo, D., Campos, E., & Terrero, P. (2012). Spanish experience in desalination for agriculture. Desalination and Water Treatment, 51(1-3), 53-66. doi:10.1080/19443994.2012.708155Zarzo D. (2017) - La desalación española, ejemplo mundial. Retema , 202 septiembre/octubre, 2017.Zarzuela A. (2018) - Desalinización y consumo energético. Conferencia AQUAEnergy: de la huella del carbono a la huella hídrica. Fundación Jorge Juan. Madrid, Noviembre 2018

    Experimental simulation of continuous nanofiltration processes by means of a single module in batch mode

    Full text link
    [EN] This work proposes a method of simulating the performance of continuous nanofiltration processes by means of experimental runs performed on a laboratory set-up equipped with a spiral-wound module working in batch recirculation mode. It describes how to implement the proper changes in feed concentration and operating conditions in a batch recirculated system in order to obtain similar conditions to those of a continuous one. The analogy between the concentration process in the continuous and in the batch recirculation system is discussed and the difference in ion concentration of the cumulative permeate between the two systems is estimated numerically. The procedure was applied in a case study to estimate the performance of a continuous process intended to remove nitrate from brackish water using a high rejection nanofiltration membrane (DowFilmtec NF90). The sequence of concentration steps performed in the batch-recirculated set-up yielded an estimation of the ion concentration profiles throughout the continuous system. A mathematical analysis of the results showed that the nitrate concentration in the permeate experimentally obtained in the batch system is 4.5% higher than that expected in the continuous system. The experimental method described here can be used to design membrane system applications for which the target ions are not accurately predicted by models or are not included in commercial software. (C) 2017 Published by Elsevier B.V.This work was supported by the Spanish Ministry for Economy and Competitiveness [Project OPTIMEM CTM2010-20248].Santafé Moros, MA.; Gozálvez-Zafrilla, JM.; Lora-García, J. (2017). Experimental simulation of continuous nanofiltration processes by means of a single module in batch mode. Separation and Purification Technology. 187:233-243. https://doi.org/10.1016/j.seppur.2017.06.05923324318

    Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent

    Full text link
    [EN] In this study, membrane fouling caused by paperboard mill treated effluent (PMTE) was investigated based on a dead-end ultrafiltration (UF) pilot-scale study. The membranes employed were commercial hydrophobic UF membranes made of polyethersulfone (PES) with a molecular weight cut-off of 10 kDa, 50 kDa, and 100 kDa. Membrane fouling mechanism during dead-end filtration, chemical analysis, field emission scanning electron microscopy (FESEM), energy-dispersive spectrophotometry (EDS), attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and 3D fluorescence excitation emission matrix (3DEEM) analysis were applied to understand which fraction of the dissolved and colloidal substances (DCS) caused the membrane fouling. The results indicated that the phenomenon controlling fouling mechanism tended to be cake layer formation (R-2 >= 0.98) for all membranes tested. The 3DEEM results indicate that the majority of the organic foulants with fluorescence characteristics on the membrane were colloidal proteins (protein-like substances I+II) and macromolecular proteins (soluble microbial products, SMP-like substances). In addition, polysaccharide (cellulosic species), fatty and resin acid substances were identified on the fouled membrane by the ATR-FTIR analysis and play an important role in membrane fouling. In addition, the FESEM and EDS analyses indicate that the presence of inorganic foulants on the membrane surfaces, such as metal ions and especially Ca2+, can accelerate membrane fouling, whereas Mg and Si are linked to reversible fouling.Sousa, MRS.; Lora-García, J.; López Pérez, MF.; Heran, M. (2020). Identification of Foulants on Polyethersulfone Membranes Used to Remove Colloids and Dissolved Matter from Paper Mill Treated Effluent. Water. 12(2):1-27. https://doi.org/10.3390/w12020365S127122Key Statistics Report 2017|CEPI—CONFEDERATION OF EUROPEAN PAPER INDUSTRIEShttp://www.cepi.org/keystatistics2017Sevimli, M. F. (2005). Post-Treatment of Pulp and Paper Industry Wastewater by Advanced Oxidation Processes. Ozone: Science & Engineering, 27(1), 37-43. doi:10.1080/01919510590908968Zwain, H. M., Hassan, S. R., Zaman, N. Q., Aziz, H. A., & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering, 1(1-2), 61-64. doi:10.1016/j.jece.2013.03.007Ordóñez, R., Hermosilla, D., San Pío, I., & Blanco, A. (2010). Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill. Water Science and Technology, 62(7), 1694-1703. doi:10.2166/wst.2010.933Rudolph, G., Schagerlöf, H., Morkeberg Krogh, K., Jönsson, A.-S., & Lipnizki, F. (2018). Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes, 8(4), 91. doi:10.3390/membranes8040091Bayr, S., & Rintala, J. (2012). Thermophilic anaerobic digestion of pulp and paper mill primary sludge and co-digestion of primary and secondary sludge. Water Research, 46(15), 4713-4720. doi:10.1016/j.watres.2012.06.033Chen, C., Mao, S., Wang, J., Bao, J., Xu, H., Su, W., & Dai, H. (2015). Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis. BioResources, 10(2). doi:10.15376/biores.10.2.2376-2391Puro, L., Kallioinen, M., Mänttäri, M., Natarajan, G., C. Cameron, D., & Nyström, M. (2010). Performance of RC and PES ultrafiltration membranes in filtration of pulp mill process waters. Desalination, 264(3), 249-255. doi:10.1016/j.desal.2010.06.034Zaidi, A., Buisson, H., Sourirajan, S., & Wood, H. (1992). Ultra- and Nano-Filtration in Advanced Effluent Treatment Schemes for Pollution Control in the Pulp and Paper Industry. Water Science and Technology, 25(10), 263-276. doi:10.2166/wst.1992.0254Karthik, M., Dhodapkar, R., Manekar, P., Aswale, P., & Nandy, T. (2011). Closing water loop in a paper mill section for water conservation and reuse. Desalination, 281, 172-178. doi:10.1016/j.desal.2011.07.055Sousa, M. R. S., Lora-Garcia, J., & López-Pérez, M.-F. (2018). Modelling approach to an ultrafiltration process for the removal of dissolved and colloidal substances from treated wastewater for reuse in recycled paper manufacturing. Journal of Water Process Engineering, 21, 96-106. doi:10.1016/j.jwpe.2017.11.017Shukla, S. K., Kumar, V., Van Doan, T., Yoo, K., Kim, Y., & Park, J. (2014). Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent. Clean Technologies and Environmental Policy, 17(3), 781-788. doi:10.1007/s10098-014-0836-2Winter, J., Barbeau, B., & Bérubé, P. (2017). Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal—Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes, 7(3), 34. doi:10.3390/membranes7030034Kossar, M. J., Amaral, K. J., Martinelli, S. S., & Erbe, M. C. L. (2013). Proposal for water reuse in the Kraft pulp and paper industry. Water Practice and Technology, 8(3-4), 359-374. doi:10.2166/wpt.2013.036Beril Gönder, Z., Arayici, S., & Barlas, H. (2011). Advanced treatment of pulp and paper mill wastewater by nanofiltration process: Effects of operating conditions on membrane fouling. Separation and Purification Technology, 76(3), 292-302. doi:10.1016/j.seppur.2010.10.018Hubbe, M. A., Sundberg, A., Mocchiutti, P., Ni, Y., & Pelton, R. (2012). DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 7(4). doi:10.15376/biores.7.4.6109-6193Puro, L., Tanninen, J., & Nyström, M. (2002). Analyses of organic foulants in membranes fouled by pulp and paper mill effluent using solid-liquid extraction. Desalination, 143(1), 1-9. doi:10.1016/s0011-9164(02)00215-1Wang, Z., Wu, Z., & Tang, S. (2009). Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 43(6), 1533-1540. doi:10.1016/j.watres.2008.12.033Tian, J., Yu, H., Shen, Y., Shi, W., Liu, D., Gao, S., & Cui, F. (2015). Identification of irreversible UF membrane foulants by fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination and Water Treatment, 57(46), 21794-21805. doi:10.1080/19443994.2015.1127783Jacquin, C., Teychene, B., Lemee, L., Lesage, G., & Heran, M. (2018). Characteristics and fouling behaviors of Dissolved Organic Matter fractions in a full-scale submerged membrane bioreactor for municipal wastewater treatment. Biochemical Engineering Journal, 132, 169-181. doi:10.1016/j.bej.2017.12.016Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environmental Science & Technology, 37(24), 5701-5710. doi:10.1021/es034354cPeiris, R. H., Hallé, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P. M., & Legge, R. L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Research, 44(1), 185-194. doi:10.1016/j.watres.2009.09.036Peldszus, S., Hallé, C., Peiris, R. H., Hamouda, M., Jin, X., Legge, R. L., … Huck, P. M. (2011). Reversible and irreversible low-pressure membrane foulants in drinking water treatment: Identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Research, 45(16), 5161-5170. doi:10.1016/j.watres.2011.07.022Yu, H., Qu, F., Liang, H., Han, Z., Ma, J., Shao, S., … Li, G. (2014). Understanding ultrafiltration membrane fouling by extracellular organic matter of Microcystis aeruginosa using fluorescence excitation–emission matrix coupled with parallel factor analysis. Desalination, 337, 67-75. doi:10.1016/j.desal.2014.01.014Liu, Y., Bo, S., Zhu, Y., & Zhang, W. (2003). Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 44(23), 7209-7220. doi:10.1016/j.polymer.2003.08.037Howe, K. J., Marwah, A., Chiu, K.-P., & Adham, S. S. (2006). Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 40(24), 7908-7913. doi:10.1021/es0616480Chang, I.-S., & Kim, S.-N. (2005). Wastewater treatment using membrane filtration—effect of biosolids concentration on cake resistance. Process Biochemistry, 40(3-4), 1307-1314. doi:10.1016/j.procbio.2004.06.019Teychene, B., Collet, G., & Gallard, H. (2016). Modeling of combined particles and natural organic matter fouling of ultrafiltration membrane. Journal of Membrane Science, 505, 185-193. doi:10.1016/j.memsci.2016.01.039Bowen, W. R., Calvo, J. I., & Hernández, A. (1995). Steps of membrane blocking in flux decline during protein microfiltration. Journal of Membrane Science, 101(1-2), 153-165. doi:10.1016/0376-7388(94)00295-aVela, M. C. V., Blanco, S. Á., García, J. L., & Rodríguez, E. B. (2008). Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62(3), 489-498. doi:10.1016/j.seppur.2008.02.028Korshin, G. V., Li, C.-W., & Benjamin, M. M. (1997). The decrease of UV absorbance as an indicator of TOX formation. Water Research, 31(4), 946-949. doi:10.1016/s0043-1354(96)00393-4Archer, A. D., & Singer, P. C. (2006). An evaluation of the relationship between SUVA and NOM coagulation using the ICR database. Journal - American Water Works Association, 98(7), 110-123. doi:10.1002/j.1551-8833.2006.tb07715.xEdzwald, J. K., & Tobiason, J. E. (1999). Enhanced Coagulation: US Requirements and a Broader View. Water Science and Technology, 40(9), 63-70. doi:10.2166/wst.1999.0444Martínez, C., Gómez, V., Pocurull, E., & Borrull, F. (2014). Characterization of organic fouling in reverse osmosis membranes by headspace solid phase microextraction and gas chromatography–mass spectrometry. Water Science and Technology, 71(1), 117-125. doi:10.2166/wst.2014.475Puro, L., Kallioinen, M., Mänttäri, M., & Nyström, M. (2011). Evaluation of behavior and fouling potential of wood extractives in ultrafiltration of pulp and paper mill process water. Journal of Membrane Science, 368(1-2), 150-158. doi:10.1016/j.memsci.2010.11.032Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205-219. doi:10.1016/j.watres.2016.03.021Shao, S., Liang, H., Qu, F., Yu, H., Li, K., & Li, G. (2014). Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation–emission matrices. Journal of Membrane Science, 464, 33-42. doi:10.1016/j.memsci.2014.03.071Goletz, C., Wagner, M., Grübel, A., Schmidt, W., Korf, N., & Werner, P. (2011). Standardization of fluorescence excitation–emission-matrices in aquatic milieu. Talanta, 85(1), 650-656. doi:10.1016/j.talanta.2011.04.045Park, M., & Snyder, S. A. (2018). Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere, 193, 530-537. doi:10.1016/j.chemosphere.2017.11.069Jacquin, C., Lesage, G., Traber, J., Pronk, W., & Heran, M. (2017). Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). Water Research, 118, 82-92. doi:10.1016/j.watres.2017.04.009Miao, Q., Huang, L., & Chen, L. (2012). Advances in the Control of Dissolved and Colloidal Substances Present in Papermaking Processes: A Brief Review. BioResources, 8(1). doi:10.15376/biores.8.1.1431-1455Wang, Z., Wu, Z., Yin, X., & Tian, L. (2008). Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization. Journal of Membrane Science, 325(1), 238-244. doi:10.1016/j.memsci.2008.07.035Zhu, X., Wang, Z., & Wu, Z. (2011). Characterization of membrane foulants in a full-scale membrane bioreactor for supermarket wastewater treatment. Process Biochemistry, 46(4), 1001-1009. doi:10.1016/j.procbio.2011.01.020Crozes, G., Anselme, C., & Mallevialle, J. (1993). Effect of adsorption of organic matter on fouling of ultrafiltration membranes. Journal of Membrane Science, 84(1-2), 61-77. doi:10.1016/0376-7388(93)85051-wLiu, Y., Li, X., Yang, Y., Ye, W., Ji, S., Ren, J., & Zhou, Z. (2014). Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water. Desalination, 347, 191-198. doi:10.1016/j.desal.2014.05.039Belfer, S., Fainchtain, R., Purinson, Y., & Kedem, O. (2000). Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled. Journal of Membrane Science, 172(1-2), 113-124. doi:10.1016/s0376-7388(00)00316-1Howe, K. J., Ishida, K. P., & Clark, M. M. (2002). Use of ATR/FTIR spectrometry to study fouling of microfiltration membranes by natural waters. Desalination, 147(1-3), 251-255. doi:10.1016/s0011-9164(02)00545-3Jarusutthirak, C., Amy, G., & Croué, J.-P. (2002). Fouling characteristics of wastewater effluent organic matter (EfOM) isolates on NF and UF membranes. Desalination, 145(1-3), 247-255. doi:10.1016/s0011-9164(02)00419-8Goh, Y. T., Harris, J. L., & Roddick, F. A. (2011). Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Science and Technology, 63(12), 2853-2859. doi:10.2166/wst.2011.450Maruyama, T. (2001). FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 192(1-2), 201-207. doi:10.1016/s0376-7388(01)00502-6Her, N., Amy, G., Park, H.-R., & Song, M. (2004). Characterizing algogenic organic matter (AOM) and evaluating associated NF membrane fouling. Water Research, 38(6), 1427-1438. doi:10.1016/j.watres.2003.12.008Kimura, K., Yamato, N., Yamamura, H., & Watanabe, Y. (2005). Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environmental Science & Technology, 39(16), 6293-6299. doi:10.1021/es0502425Carlsson, D. ., Dal-Cin, M. ., Black, P., & Lick, C. . (1998). A surface spectroscopic study of membranes fouled by pulp mill effluent1Issued as NRC #41964.1. Journal of Membrane Science, 142(1), 1-11. doi:10.1016/s0376-7388(97)00305-0Erkan, H. S., & Engin, G. O. (2017). The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor. Water Science and Technology, 76(7), 1715-1725. doi:10.2166/wst.2017.35

    Utilization of NaCl solutions to clean ultrafiltration membranes fouled by whey protein concentrates

    Full text link
    In this work, whey protein concentrate (WPC) solutions at different concentrations (22.2, 333 and 150 g L-1) were used to foul three ultrafiltration (UF) membranes of different materials and molecular weight cut-offs (MWCOs): a polyethersulfone (PES) membrane of 5 kDa, a ceramic ZrO2-TiO2 membrane of 15 kDa and a permanently hydrophilic polyethersulfone (PESH) membrane of 30 kDa. NaCl solutions at different salt concentrations, temperatures and crossflow velocities were used to clean the UF membranes tested. The cleaning efficiency was related to the MWCO, membrane material and operating conditions during fouling and cleaning steps. NaCl solutions were able to completely clean the membranes fouled with the WPC solutions at the lowest concentration tested. As WPC concentration increased, the hydraulic cleaning efficiency (HCE) decreased. The results demonstrated that an increase in temperature and crossflow velocity of the cleaning solution caused an increase in the HCE. Regarding NaCl concentration, the HCE increased up to an optimal value. As the concentration was greater than this value, the cleaning efficiency decreased. In addition, an equation that correlates the cleaning efficiency to the operating parameters studied in this work (temperature, NaCl concentration, crossflow velocity in the cleaning procedure and WPC concentration during the fouling step) was developed and then, an optimization analysis was performed to determine the values of the parameters that lead to a 100% cleaning efficiency.The authors of this work wish to gratefully acknowledge the financial support from the Spanish Ministry of Science and Innovation through the project CTM2010-20186.Corbatón Báguena, MJ.; Alvarez Blanco, S.; Vincent Vela, MC.; Lora-García, J. (2015). Utilization of NaCl solutions to clean ultrafiltration membranes fouled by whey protein concentrates. Separation and Purification Technology. 150:95-101. https://doi.org/10.1016/j.seppur.2015.06.039S9510115

    Analysis of two ultrafiltration fouling models and estimation of model parameters as a function of operational conditions

    Full text link
    This work analyses the measure of fit of experimental data of permeate flux decline with time for ultrafiltration experiments performed with polyethylene glycol aqueous solutions to two different ultrafiltration models. A feed solution of 5 kg/m of polyethylene glycol and a monotubular ceramic membrane of - were used in the experiments. The first model considered was developed by Ho and Zydney and it considers two different fouling mechanisms: pore blocking and gel layer formation. The second model was proposed by Yee et al. It is an exponential model that considers three stages: concentration polarization, molecule deposition on the membrane surface and long-term fouling. The results show that both models give very accurate predictions for the severe fouling conditions (high transmembrane pressures and low crossflow velocities). However, both models cannot explain the experimental results obtained for all the experimental conditions tested. An equation for Ho and Zydney's model parameters as a function of operating conditions was obtained by means of multiple regression analysis.The authors of this work wish to gratefully acknowledge the financial support of the Universidad Politecnica de Valencia through the Project No. 2010.1009 and the Spanish Ministry of Science and Technology through the project CTM2010-20186.Corbatón Báguena, MJ.; Vincent Vela, MC.; Alvarez Blanco, S.; Lora García, J. (2013). Analysis of two ultrafiltration fouling models and estimation of model parameters as a function of operational conditions. Transport in Porous Media. 99(2):391-411. https://doi.org/10.1007/s11242-013-0192-4S391411992Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M.I., Iborra-Clar, M.I.: Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. J. Hazard. Mater. 209–210, 492–500 (2012)Baldasso, C., Barros, T.C., Tessaro, I.C.: Concentration and purification of whey proteins by ultrafiltration. Desalination 278, 381–386 (2011)Bhattacharjee, C., Datta, S.: Analysis of polarized layer resistance during ultrafiltration of PEG-6000: an approach based on filtration theory. Sep. Purif. Technol. 33, 115–126 (2003)Buetehorn, S., Carstensen, F., Wintgens, T., Melin, T., Volmering, D., Vossenkaul, K.: Permeate flux decline in crossflow microfiltration at constant pressure. Desalination 250, 985–990 (2010)Chan, R., Chen, V.: Characterization of protein fouling on membranes: opportunities and challenges. J. Membr. Sci. 242, 169–188 (2004)Cheryan, M.: Ultrafiltration and Microfiltration Handbook. Technomic Publishing Company, Inc., Lancaster (1998)de Barros, S.T.D., Andrade, C.M.G., Mendes, E.S., Peres, L.: Study of fouling mechanism in pineapple juice clarification by ultrafiltration. J. Membr. Sci. 215, 213–224 (2003)de la Casa, E.J., Guadix, A., Ibáñez, R., Camacho, F., Guadix, E.M.: A combined fouling model to describe the influence of the electrostatic environment on the cross-flow microfiltration of BSA. J. Membr. Sci. 318, 247–254 (2008)Espina, V., Jaffrin, M.Y., Ding, L., Cancino, B.: Fractionation of pasteurized skim milk proteins by dynamic filtration. Food Res. Int. 43, 1335–1346 (2010)Fernández-Sempere, J., Ruiz-Beviá, F., García-Algado, P., Salcedo-Díaz, R.: Visualization and modeling of the polarization layer and a reversible adsorption process in PEG-10000 dead-end ultrafiltration. J. Membr. Sci. 342, 279–290 (2009)Field, R.W., Wu, D., Howell, J.A., Gupta, B.B.: Critical flux concept for microfiltration fouling. J. Membr. Sci. 100, 259–272 (1995)Hermia, J.: Constant pressure blocking filtration laws—application to powerlaw non-Newtonian fluids. Trans. IChemE 60, 183–187 (1982)Ho, C.-C., Zydney, A.L.: A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Colloid Interface Sci. 232, 389–399 (2000)Karasu, K., Yoshikawa, S., Ookawara, S., Ogawa, K., Kentish, S.E., Stevens, G.W.: A combined model for the prediction of the permeation flux during the cross-flow ultrafiltration of a whey suspension. J. Membr. Sci. 361, 71–77 (2010)Ko, M.K., Pellegrino, J.J.: Determination of osmotic pressure and fouling resistances and their effects on performance of ultrafiltration membranes. J. Membr. Sci. 74, 141–157 (1992)Lin, S.-H., Hung, C.-L., Juang, R.-S.: Applicability of the exponential time dependence of flux decline during dead-end ultrafiltration of binary protein solutions. Chem. Eng. J. 145, 211–217 (2008)Mondal, S., De, S.: A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation. Sep. Purif. Technol. 75, 222–228 (2010)Mondor, M., Girard, B., Moresoli, C.: Modeling flux behaviour for membrane filtration of apple juice. Food Res. Int. 33, 539–548 (2000)Muthukumaran, S., Kentish, S.E., Ashokkumar, M., Stevens, G.W.: Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. J. Membr. Sci. 258, 106–114 (2005)Peng, H., Tremblay, A.Y.: Membrane regeneration and filtration modeling in treating oily wastewaters. J. Membr. Sci. 324, 59–66 (2008)Popović, S., Milanović, S., Iličić, M., Djurić, M., Tekić, M.: Flux recovery of tubular ceramic membranes fouled with whey proteins. Desalination 249, 293–300 (2009)Purkait, M.K., DasGupta, S., De, S.: Resistance in series model for micellar enhanced ultrafiltration of eosin dye. J. Colloid Interface Sci. 270, 496–506 (2004)Rinaldoni, A.N., Taragaza, C.C., Campderrós, M.E., Pérez, Padilla A.: Assessing performance of skim milk ultrafiltration by using technical parameters. J. Food Eng. 92, 226–232 (2009)Santafé-Moros, A., Gozálvez-Zafrilla, J.M.: Nanofiltration study of the interaction between bicarbonate and nitrate ions. Desalination 250, 773–777 (2010)Song, L.: Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. J. Membr. Sci. 139, 183–200 (1998)Vincent Vela, M.C., Álvarez, Blanco S., Lora, García J., Gozálvez Zafrilla, J.M., Bergantiños, Rodríguez E.: Modelling of flux decline in crossflow ultrafiltration of macromolecules: comparison between predicted and experimental results. Desalination 204, 328–334 (2007a)Vincent Vela, M.C., Álvarez, Blanco S., Lora, García J., Gozálvez Zafrilla, J.M., Bergantiños, Rodríguez E.: Utilization of a shear induced diffusion model to predict permeate flux in the crossflow ultrafiltration of macromolecules. Desalination 206, 61–68 (2007b)Vincent Vela, M.C., Álvarez, Blanco S., Lora, García J., Bergantiños, Rodríguez E.: Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Sep. Purif. Technol. 62, 489–498 (2008a)Vincent Vela, M.C., Álvarez, Blanco S., Lora, García J., Bergantiños, Rodríguez E.: Fouling dynamics modelling in the ultrafiltration of PEGs. Desalination 222, 451–456 (2008b)Vincent Vela, M.C., Álvarez, Blanco S., Lora, García J., Bergantiños, Rodríguez E.: Analysis of membrane pore blocking models to crossflow ultrafiltration in the ultrafiltration of PEG. Chem. Eng. J. 149, 232–241 (2009)Vincent-Vela, C., Cuartas-Uribe, B., Álvarez-Blanco, S., Lora-García, J., Bergantiños-Rodríguez, E.: Analysis of ultrafiltration processes with dilatant macromolecular solutions by means of dimensionless numbers and hydrodynamic parameters. Sep. Purif. Technol. 75, 332–339 (2010)Wang, L., Song, L.: Flux decline in crossflow microfiltration and ultrafiltration: experimental verification of fouling dynamics. J. Membr. Sci. 160, 41–50 (1999)Yee, K.W.K., Wiley, D.E., Bao, J.: A unified model of the time dependence of flux decline for the long-term ultrafiltration of whey. J. Membr. Sci. 332, 69–70 (2009

    Novel compatibilizers and plasticizers developed from epoxidized and maleinized chia oil in composites based on PLA and chia seed flour

    Full text link
    [EN] Novel compatibilizers and plasticizers derived from epoxidized chia seed oil (ECO) and maleinized chia seed oil (MCO) have been applied in composites based on poly(lactic acid) (PLA) and 15 wt% chia seed flour (CSF). Results obtained have been compared to conventional silane coupling agent, (3-glycidyloxypropyl) trimethoxysilane (GPS), and a petroleum-based compatibilizer, poly(styrene-co-glycidyl methacrylate) copolymer (Xibond, (R)). The compatibilization effect of green composites were assessed by FTIR. The addition of all four compatibilizers improved the ductile mechanical and thermal properties of the composites. The morphology analysis revealed an improvement of interfacial adhesion of the CSF particles into the PLA matrix. In particular, ECO and MCO composites showed a roughness with long filaments in their morphology which plays a crucial role in improving the ductile properties highly. The elongation at break was 10 and 8 times higher using ECO and MCO, respectively, compared to uncompatibilized composite. Moreover, the composites manufactured showed low values (<9%) in the water uptake assay and a negligible compostability delay. The use of novel compatibilizers based on modified vegetable oils could mean an interesting proposal to obtain an entirely environmentally friendly composite with a remarkable ductile property.This research work was funded by the Ministry of Science and Innovation-¿Retos de la Sociedad¿. Project references: PID2020-119142RA-I00. I. Dominguez-Candela wants to thank Universitat Politècnica de València for his FPI grant (PAID-2019-SP20190013) and Generalitat Valenciana-GVA (ACIF/2020/233). J. Gomez-Caturla wants to thank Generalitat Valenciana-GVA, for his FPI grant (ACIF/2021/185) and grant FPU20/01732 funded by MCIN/AEI/10.13039/ 501100011033.Domínguez-Candela, I.; Gómez-Caturla, J.; Cardona, SC.; Lora-García, J.; Fombuena, V. (2022). Novel compatibilizers and plasticizers developed from epoxidized and maleinized chia oil in composites based on PLA and chia seed flour. European Polymer Journal. 173(111289):1-14. https://doi.org/10.1016/j.eurpolymj.2022.11128911417311128

    Development of a novel epoxy resin based on epoxidized chia oil as matrix and maleinized chia oil as bio-renewable crosslinker

    Full text link
    [EN] In this work novel thermosetting resins with high bio-based content have been developed derived from chia seed oil (CO). Epoxidized chia seed oil (ECO) was used as bio-based epoxy matrix with different mixtures of crosslinker agents, that is, methyl nadic anhydride (MNA) as petroleum-derived and maleinized chia seed oil (MCO) as bio-based crosslinker. The chemically modified oils from CO, that is, ECO and MCO, and MNA were analyzed by titration and FT-IR. Additional 1H NMR analysis was performed to characterize MCO structure. Two different behaviors were observed using the mixtures of crosslinkers. On one hand, MNA increases the rigidity with bio-based content of 54.2%. On the other hand, the addition of MCO provides higher ductility with bio-based content up to 98%. The same trend was observed by DMTA analysis. The novel cured resins were successfully crosslinked as demonstrated by the mechanical properties, FT-IR analyses, and gel content. Based on the results, it is concluded that MCO presents higher reactivity than MNA, decreasing curing time with possible energy saving at industrial level. In general, the results showed that adding the appropriate amount of MCO, green thermosetting resins with the desired thermal and mechanical properties can be manufactured with high bio-based content.Ministry of Science and Innovation,Grant/Award Number: PID2020-119142RA-I00; Universitat Politecnica de Valencia, Grant/Award Number: PAID-2019-SP20190013; Generalitat Valenciana,Grant/Award Number: ACIF/2020/233. This research work was funded by the Ministry of Science and Innovation-¿Retos de la Sociedad¿. Project references: PID2020-119142RA-I00. I. Dominguez-Candela wants to thank Universitat Politècnica de València for his FPI grant (PAID-2019-SP20190013) and Generalitat Valenciana-GVA (ACIF/2020/233). Funding for open access charge: CRUE-Universitat Politècnica de València.Domínguez-Candela, I.; Perez-Nakai, A.; Torres-Roca, E.; Lora-García, J.; Fombuena, V. (2023). Development of a novel epoxy resin based on epoxidized chia oil as matrix and maleinized chia oil as bio-renewable crosslinker. Journal of Applied Polymer Science. 140(10):1-14. https://doi.org/10.1002/app.535741141401

    Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid)

    Full text link
    [EN] The use of a new bio-based plasticizer derived from epoxidized chia seed oil (ECO) was applied in a poly(lactic acid) (PLA) matrix. ECO was used due to its high epoxy content (6.7%), which led to an improved chemical interaction with PLA. Melt extrusion was used to plasticize PLA with different ECO content in the 0-10 wt.% range. Mechanical, morphological, and thermal characterization was carried out to evaluate the effect of ECO percentage. Besides, disintegration and migration tests were studied to assess the future application in packaging industry. Ductile properties improve by 700% in elongation at break with 10 wt.% ECO content. Field emission scanning electron microscopy (FESEM) showed a phase separation with ECO content equal or higher than 7.5 wt.%. Thermal stabilization was improved 14 degrees C as ECO content increased. All plasticized PLA was disintegrated under composting conditions, not observing a delay up to 5 wt.% ECO. Migration tests pointed out a very low migration, less than 0.11 wt.%, which is to interest to the packaging industry.I.D.-C. wants to thank Universitat Politecnica de Valencia for his FPI grant (PAID-2019-SP20190013) and Generalitat Valenciana (GVA) for his FPI grant (ACIF/2020/233). J.M.F. thanks the postdoc contract (APOSTD/2019/122) Generalitat Valenciana (2019-2021).Domínguez-Candela, I.; Ferri Azor, JM.; Cardona, SC.; Lora-García, J.; Fombuena, V. (2021). Dual Plasticizer/Thermal Stabilizer Effect of Epoxidized Chia Seed Oil (Salvia hispanica L.) to Improve Ductility and Thermal Properties of Poly(Lactic Acid). Polymers. 13(8):1-16. https://doi.org/10.3390/polym13081283S11613

    ASSESSMENT OF STUDENTS IN THE USE OF MATLAB GUIDE TEMPLATES FOR SOLVING MATERIAL BALANCES. A TEACHING EXPERIENCE IN CHEMICAL ENGINEERING DEGREE

    Full text link
    Domínguez-Candela, I.; Cardona, SC.; Lora-García, J.; López Pérez, MF.; Fombuena, V. (2021). ASSESSMENT OF STUDENTS IN THE USE OF MATLAB GUIDE TEMPLATES FOR SOLVING MATERIAL BALANCES. A TEACHING EXPERIENCE IN CHEMICAL ENGINEERING DEGREE. IATED Academy. 5926-5933. https://doi.org/10.21125/inted.2021.11885926593

    Evaluation of fringe projection and laser scanning for 3d reconstruction of dental pieces

    Get PDF
    The rapid prototyping and copying of real 3D objects play a key role in some industries. Both applications rely on the generation of appropriated computer aided manufacturing (CAM) files. These files represent a set of coordinates of an object and can be understood by a computer numerically controlled (CNC) machine. Non-contact techniques, like laser scanning and fringe projection, are among the possibilities for obtaining such CAM files. In this work, a comparison between the two aforementioned non-contact techniques is presented. The comparison is made based on their performance as candidates for generating CAM files of objects of high reflectivity and maximum lateral dimensions of the order of 15 mm The parameters tested are the quality of the 3D reconstruction, the processing time, and the possibility of these being implemented in industrial scenarios, among others. Under the scope of these parameters, it is concluded that laser scanning offers superior performance for the kind of objects here considered. The techniques are evaluated with dental pieces in order to validate these methodologies in the rapid prototyping and copying of teeth
    corecore