489 research outputs found

    CAPTCHaStar! A novel CAPTCHA based on interactive shape discovery

    Full text link
    Over the last years, most websites on which users can register (e.g., email providers and social networks) adopted CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) as a countermeasure against automated attacks. The battle of wits between designers and attackers of CAPTCHAs led to current ones being annoying and hard to solve for users, while still being vulnerable to automated attacks. In this paper, we propose CAPTCHaStar, a new image-based CAPTCHA that relies on user interaction. This novel CAPTCHA leverages the innate human ability to recognize shapes in a confused environment. We assess the effectiveness of our proposal for the two key aspects for CAPTCHAs, i.e., usability, and resiliency to automated attacks. In particular, we evaluated the usability, carrying out a thorough user study, and we tested the resiliency of our proposal against several types of automated attacks: traditional ones; designed ad-hoc for our proposal; and based on machine learning. Compared to the state of the art, our proposal is more user friendly (e.g., only some 35% of the users prefer current solutions, such as text-based CAPTCHAs) and more resilient to automated attacks.Comment: 15 page

    Inherently fluorescent polyaniline nanoparticles in a dynamic landscape

    Get PDF
    In this paper we report for the first time on the emissive behavior of two polyaniline (PANI) nanoparticle systems produced via oxidative chemical polymerization in the presence of either poly(vinyl alcohol)(PVA) or chitosan as polymeric stabilizers in water. The emission from PANI nanoparticles is irreversibly quenched by an increase of pH of the suspending medium from acid to neutral (chitosan–PANI) or alkaline (PVA–PANI). Conversely, PANI nanorods synthesized in the same conditions of the above, but in presence of poly(N-vinyl pyrrolidone), is not emissive at any pH. The role of the polymeric surfactant as a soft template is key in controlling the morphology and the properties of the obtained PANI dispersions. FTIR, UV–Vis absorption and photoluminescence excitation (PLE) spectra studies suggest that the emissive properties are related to the establishment of strong, non-covalent interactions between nanoscalar PANI particles and the polymeric surfactant at the pH of synthesis. Morphology examination of the three systems, by both dynamic light scattering (DLS) and Transmission Electron Microscopy (TEM), reveal that photoluminescence is associated to the presence of a genuinely 3D nanoscalar morphology, together with an ordered disposition of PANI chains into aligned crystal planes. Concomitant to the irreversible quenching of the emission signal with increasing pH, there is an evolution of the morphology leading to particle coalescence, coarsening and ultimately phase-separation, with consequent modification of PANI–polymeric surfactant interactions, PANI chains supra-molecular organization and optical properties of the PANI nanoparticles dispersion

    Leukocyte Rheology Before and After Chemotactic Activation in some Venous Diseases

    Get PDF
    AbstractObjective: to evaluate leukocyte rheology, polymorphonuclear leukocyte (PMN) membrane fluidity and cytosolic Ca2+ concentration in subjects with post-phlebitic leg syndrome (PPS) and acute deep-venous leg thrombosis (DVT). Subjects: twenty-two subjects with leg PPS and 14 subjects with leg DVT. Methods: we evaluated the leukocyte filtration (unfractionated, mononuclear cells (MN) and PMN), the PMN membrane fluidity and the PMN cytosolic Ca2+ concentration. Subsequently, we evaluated the same PMN variables after in vitro chemotactic activation with 4-phorbol 12-myristate 13-acetate (PMA) and N -formyl-methionyl-leucyl-phenylalanine (fMLP). Results: at baseline we observed a significant difference in the filtration variables of unfractionated and MN cells and in PMN cytosolic Ca2+ concentration. After activation, in normal subjects and subjects with PPS and DVT, a significant variation in PMN filtration at 5 and 15 minutes was evident. In normal subjects, no variation was present in PMN membrane fluidity or cytosolic Ca2+ concentration after activation. In subjects with PPS and DVT, we found a decrease in PMN membrane fluidity and an increase in PMN cytosolic Ca2+ concentration. After PMN activation (at 5 and 15 min) Δ% of IRFR distinguished normal subjects from subjects with PPS and DVT, while no difference was found in Δ% of membrane fluidity or cytosolic Ca2+ concentration. Conclusions: there is a functional alteration of leukocytes in these patients whose mechanisms are not yet clear

    Use of biochar as filler for biocomposite blown films: Structure-processing-properties relationships

    Get PDF
    In this work, biocomposite blown films based on poly(butylene adipate-co-terephthalate) (PBAT) as biopolymeric matrix and biochar (BC) as filler were successfully fabricated. The materials were subjected to a film-blowing process after being compounded in a twin-screw extruder. The preliminary investigations conducted on melt-mixed PBAT/BC composites allowed PBAT/BC 5% and PBAT/BC 10% to be identified as the most appropriate formulations to be processed via film blowing. The blown films exhibited mechanical performances adequate for possible application as film for packaging, agricultural, and compost bags. The addition of BC led to an improvement of the elastic modulus, still maintaining high values of deformation. Water contact angle measurements revealed an increase in the hydrophobic behavior of the biocomposite films compared to PBAT. Additionally, accelerated degradative tests monitored by tensile tests and spectroscopic analysis revealed that the filler induced a photo-oxidative resistance on PBAT by delaying the degradation phenomena

    Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels

    Get PDF
    ABSTRACT To evaluate the effect of decreasing dietary protein on growth performance, carcass traits, and intestinal mucosal morphometry, 180 female Hubbard strain broiler chickens were divided into 3 groups and fed 3 isoenergetic diets ad libitum from 14 d of age until slaughter age (49 d). The treatments varied according to 3 protein levels: high-protein diet (HiP, 22.5% CP, DM basis), medium-protein diet (MedP, 20.5% CP), and low-protein diet (LowP, 18.5%). Diets were obtained by replacing wheat middlings with soybean meal and were formulated to meet or exceed broiler amino acid requirements of the NRC. Morphometric indices of duodenum, jejunum, and ileum were measured at the end of the feeding period and included villus height, crypt depth, villus-to-crypt ratio, and apparent villus surface area. The dietary protein level had a significant effect on final BW of birds, whereas ADG, ADFI, and feed efficiency remained unaffected by dietary treatment. The muscle (breast and drumstick) yields were significantly higher in birds fed the HiP diet compared with those of the MedP and LowP diets. Meat quality traits were not affected by the protein level. The villus surface area of all intestinal segments did not change among groups. Instead, reducing the dietary protein level to 20.5% resulted in a higher villus height and villus height to crypt depth ratio in the duodenum and ileum. On the basis of our findings, even if the high-protein diet promoted meat yield, a medium-protein diet could positively support broiler growth performance, as confirmed by favorable morphometric features of the intestine
    • …
    corecore