13 research outputs found

    Exploiting bioluminescence to enhance the analytical performance of whole-cell and cell-free biosensors for environmental and point-of-care applications

    Get PDF
    The routine health monitoring of living organisms and environment has become one of the major concerns of public interest. Therefore, there has been an increasing demand for fast and easy to perform monitoring technologies. The current available analytical techniques generally offer accurate and precise results; however, they often require clean samples and sophisticated equipment. Thus, they are not suitable for on site, real-time, cost-effective routine monitoring. To this end, biosensors represent suitable analytical alternative tools. Biosensors are analytical devices integrating a biological recognition element (i.e. antibody, receptor, cell) and a transducer able to convert the biological response into an easily measurable analytical signal. These tools can easily quantify an analyte or a class of analytes of interest even in a complex matrix, like clinical or environmental samples, thanks to the specificity of the biological components. Whole-cell biosensors among others offer unique features such as low cost of production and provide comprehensive functional information (i.e. detection of unclassified compounds and synergistic effects, information about the bioavailable concentration). During this PhD, several bioengineered whole-cell biosensors have been developed and optimized for environmental and point-of-care applications. Analytical performance of biosensors have been improved (i.e. low limit of detection, faster response time and wider dynamic range) thanks to synthetic biology and genetic engineering tools. Bacterial, yeast and 3D cell cultures of mammalian cell lines have been tailored at the molecular level to improve robustness and predictivity. Several reporter genes, i.e. colorimetric, fluorescent and bioluminescent proteins, have been also profiled for finding the best candidate for each point-of-need application. Furthermore, spectral resolution of different optical reporter proteins has been exploited and multiplex detection has been achieved. The inclusion of viability control strains provided a suitable tool for assessing non-specific effects on cell viability, correcting the analytical signal and increasing the analytical performance of ready-to-use cartridges

    Comprehensive profiling of diverse genetic reporters with application to whole-cell and cell-free biosensors

    Get PDF
    Whole-cell and cell-free transcription-translation biosensors have recently become favorable alternatives to conventional detection methods, as they are cost-effective, environmental friendly, and easy to use. Importantly, the biological responses from the biosensors need to be converted into a physicochemical signal for easy detection, and a variety of genetic reporters have been employed for this purpose. Reporter gene selection is vital to a sensor performance and application success. However, it was largely based on trial and error with very few systematic side-by-side investigations reported. To address this bottleneck, here we compared eight reporters from three reporter categories, i.e., fluorescent (gfpmut3, deGFP, mCherry, mScarlet-I), colorimetric (lacZ), and bioluminescent (luxCDABE from Aliivibrio fischeri and Photorhabdus luminescens, NanoLuc) reporters, under the control of two representative biosensors for mercury- and quorum-sensing molecules. Both whole-cell and cell-free formats were investigated to assess key sensing features including limit of detection (LOD), input and output dynamic ranges, response time, and output visibility. For both whole-cell biosensors, the lowest detectable concentration of analytes and the fastest responses were achieved with NanoLuc. Notably, we developed, to date, the most sensitive whole-cell mercury biosensor using NanoLuc as reporter, with an LOD 64 50.0 fM HgCl2 30 min postinduction. For cell-free biosensors, overall, NanoLuc and deGFP led to shorter response time and lower LOD than the others. This comprehensive profile of diverse reporters in a single setting provides a new important benchmark for reporter selection, aiding the rapid development of whole-cell and cell-free biosensors for various applications in the environment and health

    Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective

    Get PDF
    Bioluminescence, that is the emission of light in living organisms, has been extensively explored and applied for diverse bioanalytical applications, spanning from molecular imaging to biosensing. The unprecedented technological evolution of portable light detectors opened new possibilities to implement bioluminescence detection into miniaturized devices. We are witnessing a number of applications, including DNA sequencing, reporter gene assays, DNA amplification for point-of care and point-of need analyses relying on BL. Several photon detectors are currently available for measuring low light emission, such as photomultiplier tubes (PMT), charge-coupled devices (CCD), complementary metal oxide semiconductors (CMOS), single photon avalanche diodes (SPADs), silicon photomultipliers (SiPMs) and smartphone-integrated CMOS. Each technology has pros and cons and several issues, such as temperature dependence of the instrumental specific noise, the power supply, imaging capability and ease of integration, should be considered in the selection of the most appropriate detector for the selected BL application

    A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals

    Get PDF
    The presence of chemicals with estrogenic activity in surface, groundwater, and drinking water poses serious concerns for potential threats to human health and aquatic life. At present, no sensitive portable devices are available for the rapid monitoring of such contamination. Here, we propose a cell-based mobile platform that exploits a newly developed bioluminescent yeast-estrogen screen (nanoYES) and a low-cost compact camera as light detector. Saccharomyces cerevisiae cells were genetically engineered with a yeast codon-optimized variant of NanoLuc luciferase (yNLucP) under the regulation of human estrogen receptor α activation. Ready-to-use 3D-printed cartridges with immobilized cells were prepared by optimizing a new procedure that enables to produce alginate slices with good reproducibility. A portable device was obtained exploiting a compact camera and wireless connectivity enabling a rapid and quantitative evaluation (1-h incubation at room temperature) of total estrogenic activity in small sample volumes (50Â ĂŽÂŒL) with a LOD of 0.08 nM for 17ÎÂČ-estradiol. The developed portable analytical platform was applied for the evaluation of water samples spiked with different chemicals known to have estrogen-like activity. Thanks to the high sensitivity of the newly developed yeast biosensor and the possibility to wireless connect the camera with any smartphone model, the developed configuration is more versatile than previously reported smartphone-based devices, and could find application for on-site analysis of endocrine disruptors. [Figure not available: see fulltext.]

    Smartphone-based multicolor bioluminescent 3D spheroid biosensors for monitoring inflammatory activity

    Get PDF
    Whole-cell biosensors present many advantages, including being able to monitor the toxicity and bioavailability of chemicals; cells grown in traditional 2D cultures, however, do not reproduce the complexity of in vivo physiology. In the last years, 3D cell-culture models have garnered great attention due to their capability to better mimic in vivo cellular responses to external stimuli, providing excellent model living organisms. In order to obtain a predictive, sensitive, and robust yet low-cost 3D cell biosensor, we developed a smartphone-based bioluminescent 3D cell biosensor platform for effect-based analysis. We exploited the Nuclear Factor-kappa B (NF-kB) signal transduction pathway, which is induced by several types of stressors and is involved in the regulation of cell-cycle/growth, inflammation, apoptosis, and immunity. The smartphone-based biosensor relies on immobilized HEK293 spheroids genetically engineered with powerful red- and green-emitting luciferases utilized as inflammation and viability reporters. It provides a limit of detection for Tumor Necrosis Factor (TNF\u3b1) of 0.15\u202f\ub1\u202f0.05\u202fng/mL and could be a useful tool to initially screen environmental samples or other compounds on-site, especially for additional more accurate chemical analyses

    Bioluminescence Imaging of Spheroids for High-throughput Longitudinal Studies on 3D Cell Culture Models

    Get PDF
    none7siBioluminescent (BL) cell-based assays based on two-dimensional (2D) monolayer cell cultures represent well-established bioanalytical tools for preclinical screening of drugs. However, cells in 2D cultures do not often reflect the morphology and functionality of living organisms, thus limiting the predictive value of 2D cell-based assays. Conversely, 3D cell models have the capability to generate the extracellular matrix and restore cell-to-cell communications; thus, they are the most suitable model to mimic in vivo physiology. In this work, we developed a nondestructive real-time BL imaging assay of spheroids for longitudinal studies on 3D cell models. A high-throughput BL 3D cell-based assay in micropatterned 96-well plate format is reported. The assay performance was assessed using the transcriptional regulation of nuclear factor K beta response element in human embryonic kidney (HEK293) cells. We compared concentration–response curves for tumor necrosis factor-α with those obtained using conventional 2D cell cultures. One of the main advantages of this approach is the nonlysing nature of the assay, which allows for repetitive measurements on the same sample. The assay can be implemented in any laboratory equipped with basic cell culture facilities and paves the way to the development of new 3D bioluminescent cell-based assays.mixedCevenini, Luca; Calabretta, Maria M.; Lopreside, Antonia; Branchini, Bruce R.; Southworth, Tara L.; Michelini, Elisa; Roda, AldoCevenini, Luca; Calabretta, Maria M.; Lopreside, Antonia; Branchini, Bruce R.; Southworth, Tara L.; Michelini, Elisa; Roda, Ald

    Bioluminescence Imaging of Spheroids for High‐throughput Longitudinal Studies on 3D Cell Culture Models

    No full text
    Bioluminescent (BL) cell-based assays based on two-dimensional (2D) monolayer cell cultures represent well-established bioanalytical tools for preclinical screening of drugs. However, cells in 2D cultures do not often reflect the morphology and functionality of living organisms, thus limiting the predictive value of 2D cell-based assays. Conversely, 3D cell models have the capability to generate the extracellular matrix and restore cell-to-cell communications; thus, they are the most suitable model to mimic in vivo physiology. In this work, we developed a nondestructive real-time BL imaging assay of spheroids for longitudinal studies on 3D cell models. A high-throughput BL 3D cell-based assay in micropatterned 96-well plate format is reported. The assay performance was assessed using the transcriptional regulation of nuclear factor K beta response element in human embryonic kidney (HEK293) cells. We compared concentration–response curves for tumor necrosis factor-α with those obtained using conventional 2D cell cultures. One of the main advantages of this approach is the nonlysing nature of the assay, which allows for repetitive measurements on the same sample. The assay can be implemented in any laboratory equipped with basic cell culture facilities and paves the way to the development of new 3D bioluminescent cell-based assays

    Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity

    No full text
    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. [Figure not available: see fulltext.
    corecore