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ABSTRACT  

Whole-cell biosensors present many advantages, including being able to monitor the toxicity 

and bioavailability of chemicals; cells grown in traditional 2D cultures, however, do not 

reproduce the complexity of in vivo physiology. In the last years, 3D cell-culture models have 

garnered great attention due to their capability to better mimic in vivo cellular responses to 

external stimuli, providing excellent model living organisms. In order to obtain a predictive, 

sensitive, and robust yet low-cost 3D cell biosensor, we developed a smartphone-based 

bioluminescent 3D cell biosensor platform for effect-based analysis. We exploited the 

Nuclear Factor-kappa B (NF-kB) signal transduction pathway, which is induced by several 

types of stressors and is involved in the regulation of cell-cycle/growth, inflammation, 

apoptosis, and immunity. The smartphone-based biosensor relies on immobilized HEK293 

spheroids genetically engineered with powerful red- and green-emitting luciferases utilized 

as inflammation and viability reporters. It provides a limit of detection for Tumor Necrosis 

Factor (TNF) of 0.15  0.05 ng/mL and could be a useful tool to initially screen 

environmental samples or other compounds on-site, especially for additional more accurate 

chemical analyses..  

 

Keywords: bioluminescence, whole-cell biosensor, luciferase, smartphone, 3D cell model 
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1. Introduction 

The key idea in turning cells into biosensing systems is to convert molecular recognition 

events occurring at the cellular and molecular levels into measurable analytical signals (He 

et al., 2016; Thouand, 2018). In luminescent whole-cell biosensors, this is generally 

achieved by genetically engineering cells with reporter proteins whose expression is 

regulated by activation of specific molecular pathways. The expression of reporter proteins 

can be easily and quantitatively assessed by optical reading, e.g. fluorescence or 

bioluminescence (BL) (Roda et al., 2016a).  

Thanks to their unusually high detectability, bioluminescent whole-cell biosensors have been 

used for on-site analysis by integrating cells into portable analytical devices (Michelini and 

Roda, 2012) exploiting portable light detectors such as charge-coupled devices (CCDs), 

video cameras, or complementary metal oxide semiconductors (CMOSs). These devices 

can be classified as true biosensors, since they incorporate entrapped cells as biological 

recognition elements integrated (or in intimate contact) with a transducer device (Turner, 

2013). In the past years whole-cell biosensors, especially those based on robust microbial 

cells, were successfully applied in diverse fields, ranging from environmental monitoring to 

food quality assessment and safety analysis (Bazin et al., 2017; Cevenini et al., 2018; 

Kabessa et al., 2016; Roggo and van der Meer, 2017). Nevertheless, problems related to 

variability in cell growth and metabolism due to uncontrolled factors (e.g., matrix effects, 

temperature, pH variations) are still unsolved issues that hampered a widespread 

commercial diffusion of such biosensors. 

More recently, portable light detectors have been replaced by smartphone-integrated 

CMOSs to obtain “instrument-free” detection. Smartphones offer several features that can 

be exploited for biosensor development, including high computational capability, powerful 

cameras, high coverage, and data-transmission speed. Recently, optical microscopes, 
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photometers, and other miniaturizable instrumentation were integrated in smartphones, 

exploiting 3D printing technology, to obtain reusable or disposable devices providing low-

cost alternatives to conventional point-of-need and point-of-care solutions (Comina et al., 

2016; Preechaburana et al., 2014; Sicard et al., 2015). Despite its huge potential, the 

implementation of BL in smartphone-based platforms has been seldom explored (Arts et al., 

2016; Cevenini et al.,2016; Ding et al., 2018; Kim et al., 2017; Roda et al., 2014). It is well 

known that several advantages of BL are valuable for its implementation as a detection 

technique into compact portable devices, since no external light source and no geometry 

requirements for light detection are required (Roda et al, 2016b; Roda et al., 2013). 

However, it must be pointed out that, despite the excellent signal to noise ratio due to low 

background and high quantum yield of BL reactions catalyzed by luciferases (e.g., 0.4 for P. 

pyralis luciferase, Niwa et al., 2010), BL signals are generally very weak, challenging the 

detectors’ sensitivity. For this reason, different strategies were undertaken, such as the 

selection of very bright luciferases (Arts et al., 2016; Ding et al., 2018), and the 

implementation of custom algorithms and hardware to maximize photon-capture efficiency 

(Kim et al., 2017).   

Another important consideration is related to the type of cell that is used as the sensing 

element. Although microbial cells are usually robust and their integration into portable 

analytical devices is streamlined, they provide information that is less predictive of the effects 

on humans. Therefore, especially for toxicological studies, the use of mammalian cell lines 

is more advantageous. Interesting results were obtained with a cell biosensor smartphone 

platform for inflammation based on human embryonic kidney (HEK293T) cell lines 

genetically engineered to express the NanoLuc luciferase (Cevenini et al., 2016a). This 

platform provided adequate analytical performance; although, it lacked an internal viability 

control to correct the analytical signal according to cell toxicity. An external viability control 
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was obtained by inclusion of wells containing cells engineered with a constitutive luciferase. 

This enabled parallel evaluation of nonspecific signal decays due to cell toxicity; however, 

an increase in signal variability due to cell-to-cell response variations was observed.  

Moreover, to obtain more valuable information, e.g., in terms of the reliability of toxicity and 

bioactivity data, 3D cells can be developed to provide an environment that faithfully mimics 

the more structured in vivo physiological conditions (Dubiak-Szepietowska et al., 2016, 

Wittig et al., 2013).  Several biosensors and prototypes were developed based on 3D 

multicellular cultures (spheroids), mainly relying on impedance measurements (Kloss et al., 

2008; Lundstrom, 2017). The 3D cell culture systems that have been proposed to obtain 

spheroids that mimic the in vivo cellular microenvironment include the use of low-capacity 

plates, "hanging drop" systems, and rotary cell cultures (Choi et al., 2015). While all of these 

approaches have been optimized to obtain 3D cell cultures, their implementation into 

portable devices is not trivial.  

Here, we report a smartphone-based platform, for quantitative effect-based analysis of 

analytes and complex samples having pro- or anti-inflammatory activity, relying on multicolor 

bioluminescent 3D cell biosensors. To the best of our knowledge, this is the first report of BL 

spheroid-based biosensing. We successfully applied this technology to evaluate 

inflammatory response induced by stressors via the NF-kB signal transduction pathway, 

which is induced by several types of stressors and is involved in the regulation of cell-

cycle/growth, inflammation, apoptosis, and immunity (Inoue et al., 2007). Therefore, we 

developed and characterized a smartphone-based multicolor bioluminescent biosensor for 

inflammatory activity exploiting powerful red- and green-emitting luciferases. We selected 

luciferases with suitable emission properties for efficient spectral resolution exploiting the 

Bayer filter mosaic of smartphones.  
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The biosensor consists of immobilized spheroids of human cell lines engineered with a NFkB 

reporter plasmid driving the expression of a red-emitting luciferase and a second plasmid 

harboring a constitutively expressed green-emitting luciferase as a viability control (Fig.1).  

We envisage potential applications of such an assay in different settings, such as the point-

of-need analysis of environmental and food safety controls, evaluation of nutraceutical 

properties, and security applications for rapid monitoring of potentially harmful 

contaminants.   

 

2. EXPERIMENTAL SECTION 

2.1. Chemical and reagents 

Human embryonic kidney HEK293 cells were from ATCC (American Type Culture Collection 

[ATCC], Manassas, VA, USA) and cell culture reagents and materials were from Carlo Erba 

Reagents (Cornaredo, Milano, Italy). The enzymes required for cloning procedures were 

from Fermentas (Vilnius, Lithuania). The kits for plasmid extraction, beetle luciferin 

potassium salt (D-luciferin), and BrightGlo substrate were from Promega (Madison, WI, 

USA). Tumor Necrosis Factor-α (TNF, purity higher than 95%), phorbol myristate acetate 

(PMA), poly(2-hydroxyethyl methacrylate) (poly-HEMA), gelatin from porcine skin type A, L-

15 Medium (Leibovitz), isoproturon, naphthalene, aclonifen, hydrogen peroxide, and all 

other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Polydimethylsiloxane (PDMS) Silgard 184 pre-polymer and curing agent were from Dow 

Corning (Midland, MI).  

The mammalian expression plasmids pGL4.32_NFkB_Luc2P and pGL4.74[hRluc/TK] 

carrying Luc2P luciferase under the regulation of NFkB transcriptional regulation and hRLuc 

under Herpes simplex virus thymidine kinase promoter (TK) were from Promega. Plasmids 

PpyGR-TS and red-emitting mutant PpyRE-TS luciferase genes were previously described 
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(Branchini et al., 2007). The reporter vectors pCMV_PpyGR-TS, pCMV_PpyRE-TS, 

pTK_PpyGR-TS, and pNFkB_PpyRE-TS were obtained by standard molecular cloning 

procedures.  

 

2.2. 3D-printed microstructured cartridge and smartphone accessories  

A cell cartridge containing 16 square wells (each 5 mm wide and 5 mm deep) was created 

with a desktop 3D printer (Makerbot Replicator 2X). The cartridge (40x40 mm, 7 mm height) 

was fabricated with black Polylactic Acid (PLA) at 210 °C, 300 µm resolution, 50% infill, 

printed over a customized round bottom resin film containing 500 µm microstructures with 

400 µm depth, kindly provided by ElplasiaTM, Kuraray, Japan. Cartridges were then treated 

with a 30 mg/mL ethanol solution of poly-HEMA (40 µL/well) and let dry for 6 h at room 

temperature (25 °C) under the laminar flow hood. The cartridges were made using black 

PLA deposited over a microstructured sheet containing about 200 cone-shaped 

microspaces/cm2 of 500 µm diameter and 400 µm depth. During the printing process, fused 

PLA enters into the microspaces sealing the bottom surface around each well. The 3D 

printed smartphone adaptors were fabricated with black acrylonitrile butadiene styrene 

(ABS) to provide a custom dark-box (65x65 mm, 60 mm high) weighting only 70 g. As the 

microspace film used as bottom for the cartridges is transparent, a mirror was inserted into 

the cartridge holder (Fig. 2e), to increase the light collected with the smartphone camera. 

The 3D printed parts simply snap together to form a self-supporting device (Fig. 2f). 

Smartphone adaptors and accessories were designed to fit the Nokia Lumia 1020 equipped 

with a high-performance back-side-illuminated (BSI) sensor (sensor size 1/1.5”, 41MP, pixel 

size 1.1 micron), and printed using black ABS (at 230 °C, 300 µm resolution, 30% infill).  
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2.3. Bioluminescence characterization of HEK293 cells expressing green- and red-

emitting luciferases with a smartphone 

HEK293 cells were routinely grown in Dulbecco Modified Essential Medium (DMEM high 

glucose 4.5 g/L, GE Healthcare) supplemented with 10% fetal bovine serum, L-Glutamine 2 

mM, 50 U/μL penicillin, and 50 μg/mL streptomycin. FuGENE HD transfection reagent 

(Promega) was used for transient transfections according to the manufacturer’s instructions. 

Briefly, one day before transfection cells were plated on a 24-well plate at a density of 8x104 

cells/well and transfected with 0.5 µg pCMV_PpyGR-TS or 0.5 µg pCMV_PpyRE-TS 

expression vector using a FuGENE®HD:DNA ratio of 3:1 and incubated at 37 °C with 5% 

CO2 for 24 h. Cells were gently detached, counted, and transferred in the 3D-printed 

cartridge at a density of 4.5x104 cells/well. Red- and green-emitting cells were diluted to a 

similar level of activity and imaged with the smartphone camera for 4s using different 

sensitivity settings, from ISO 100 to ISO 4000, after addition of 50 µL BrightGlo substrate. 

The BL emission spectra (450-750 nm) and kinetics (5 min, 300 ms integration time) were 

acquired in a 96-well plate with a Varioskan Flash multimode reader (Thermo Fisher 

Scientific).   

 

[Fig. 1 preferred position]  

 

2.4. Preparation of a ready-to-use cartridge with immobilized spheroids  

To develop a spheroid-biosensing platform for on-site analysis, we adopted several 

strategies to render the biosensor more simple and robust. A transparent PDMS lid was 

created using a monomer:curing agent ratio of 10:1. The solution was placed under vacuum 

for 40 min to remove bubbles and casted onto a 3D-printed master mold (replicating the cell-

cartridge) to create the array of caps (5x5 mm, 2 mm height, each) that corresponded with 
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the cell-cartridge wells. The PDMS was allowed to harden overnight at 50°C, then gently 

removed from the mask and sprayed with 70% ethanol for disinfection. The spheroid 

biosensors were obtained by transfecting HEK293 cells with 0.1 µg pTK_PpyGR-TS and 0.4 

µg pNFkB_PpyRE-TS in 24-well plates and were transferred (4.5x104 cells/well) into the 3D 

printed cell cartridge to enable spheroid formation. After overnight incubation at 37 °C, a 50 

µL-volume of 5% w/v gelatin solution (in complete medium) was added to each well. The 

cell-cartridge was kept at room temperature (25 °C) to allow the gelatin to set and form a gel 

in the wells, then sealed with the PDMS lid. To control spheroid formation and optimize the 

protocol, spheroids were imaged with an inverted microscope (Olympus IX73) using a 4X 

objective (Olympus UPlanFLN).   

 

Spheroid analysis was performed from bright-field images of HEK293 spheroids using 

ImageJ version 1.51d software to define for each spheroid’s perimeter (P) and projected 

area (A). We calculated a sphericity factor Φ ( Kelm et al., 2003) as follows: 

  

𝜙 =
𝜋   𝑥 √

4𝐴

𝜋

𝑃
    (eq.1) 

 

 

2.5. Development of a smartphone-based dual-color inflammation spheroid biosensor  

Different parameters were optimized in order to improve the 3D cell biosensor analytical 

performance in terms of selectivity, analysis time, and robustness. Thus, we changed 

different parameters including the choice of promoters, transfection ratio between different 

reporter plasmids, cell density at seeding (1.5x104, 3x104, and 4.5x104), and incubation time 
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for achieving efficient and reproducible formation of spheroids (from 4 to 18 h).  Briefly, under 

optimized conditions, HEK293 cells were transiently transfected in 24-well plates with 0.1 

µg pTK_PpyGR-TS, for the constitutive expression of a green-emitting luciferase used as 

the viability control, and with 0.4 µg pNFkB_PpyRE-TS, a reporter vector in which a red-

emitting luciferase is under the control of NFkB response elements (Fig.1). At 24 h post-

transfection, 40 µL of cells resuspended in DMEM (4.5x104 cells/well) were transferred into 

the 3D-printed cell cartridge and incubated at 37°C for spheroid formation. After 18 h, a 

cartridge containing spheroids was treated in duplicate with 10 µL TNF dilutions 

(concentration range 0.5-20 ng/mL from a stock solution of 10 µg/ml TNFα in phosphate-

buffered saline solution) or culture medium, as a control (blank). After 5 h incubation, a 50 

µL-volume of BrightGlo substrate was added to each well and BL images were acquired with 

the smartphone (4 s, ISO  800) assembled with the 3D printed accessories. 

Images were analyzed with ImageJ software (National Institutes of Health, Bethesda, MD) 

and GraphPad Prism v.5 (GraphPad Software, La Jolla, USA) was used to plot the data. 

Briefly, each image was split into RGB channels and the emission of PpyGR-TS and PpyRE-

TS were quantified by selecting regions of interest (ROIs) on corresponding images to 

calculate the mean integrated density of duplicate wells. The dose-response curve for TNF 

was obtained by calculating the red to green emission ratio for each concentration (corrected 

BL signals) and by plotting these values as fold response with respect to control (CTR). Limit 

of Detection (LOD) was calculated as the TNFα concentration that corresponds to the blank 

plus three times the standard deviation. All measurements were performed in duplicate and 

repeated with different cell cartridges at least three times.  

  

2.6. Selectivity of the biosensor 
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To evaluate the selectivity of the inflammation spheroid biosensor we tested different 

chemicals including pollutants and pesticides, i.e., isoproturon, aclonifen and naphthalene 

regulated by the European Union (Water Framework ela 2000/60/EC) and World Health 

Organization. The maximum allowable concentration Environmental Quality Standards 

(MAC-EQS) admitted by Directive 2013/39/EU in inland surface waters were tested: 0.12 

µg/L for aclonifen, 130 µg/L for naphthalene and 1.0 µg/L for isoproturon. Mixture solutions 

of different chemicals were analysed to assess additive or synergic effects of the compounds 

on the NFkB inflammation pathway. Four different mixtures were analysed: Mix 1 

(isoproturon 1.0 µg/L + naphthalene 130 µg/L), Mix 2 (isoproturon 1.0 µg/L and aclonifen 

0.12 µg/L), Mix 3 (aclonifen 0.12 µg/L and naphthalene 130 µg/L), Mix 4 (aclonifen 0.12 

µg/L, naphthalene 130 µg/L and isoproturon 1.0 µg/L). To investigate the specific effects of 

reactive oxygen species (ROS) spheroid cartridges were treated with H2O2 solutions 

(concentration range from 0.5 mM to 10 mM in doubly distilled water). 

Spheroid cartridges were treated in duplicate with 10 µL solutions of pure chemicals or 

mixtures 1-4. Cells transfected only with pNFkB_PpyRE-TS and induced with 10 ng/mL 

TNF were also prepared as the inflammatory positive control; while doubly distilled water 

was used as the negative control. After 5 h incubation, a 50 µL volume of BrightGlo substrate 

was added to each well and BL images were acquired with the smartphone (4s, ISO 800) 

and analyzed as previously described with ImageJ.  

 

2.7. Simulation of real samples 

We investigated the suitability of the 3D spheroid biosensor to analyze samples with pro-

inflammatory activity or general toxicity, thus being potentially harmful to human health. The 

chemical agent chosen for inflammation monitoring was PMA, a phorbol ester isolated from 
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Jatropa Curcas, a plant widely used as biodiesel feedstock that contains pro-inflammatory 

phorbol esters (EFSA CONTAM Panel, 2015).    

Spheroid cartridges were treated in duplicate with 10 µL PMA solutions ranging from 0.1 nM 

to 10 µM in 5% DMSO. Cells transfected only with pNFkB_PpyRE-TS and induced with 10 

ng/mL TNF were also prepared as the inflammatory positive control; while, DMSO, 1% final 

concentration, was used as the negative control. After 5 h incubation, a 50 µL volume of 

BrightGlo substrate was added to each well and BL images were acquired with the 

smartphone (4s, ISO 800) and analyzed as previously described with ImageJ. In order to 

obtain a robust biosensor and a reproducible assay for on-site applications, the analytical 

performances of spheroid cartridges were also evaluated after one week storage. Cell-

cartridges with immobilized spheroids in L-15 Medium (Leibovitz) were maintained at room 

temperature (25 °C) for up to one week before assay execution. All measurements were 

repeated with 3 different cartridges. 

 

3. RESULTS AND DISCUSSION 

The possibility to use the smartphone camera to detect bio/chemiluminescent reactions has 

been previously reported (Roda et al., 2014b, Cevenini et al., 2016b, Kim et al., 2017). 

However, the full exploitation of a smartphone-integrated CMOS camera to simultaneously 

detect multiple colors emitted by genetically engineered cells in the same well has not been 

reported yet. In addition, the implementation of 3D cell cultures, i.e. spheroids, for 

smartphone-based biosensing has not been addressed.  

The proposed biosensing platform for on-site analysis required adaptation to preserve the 

functionality of the cells while maintaining adequate sensitivity. In fact, although spheroid-

biosensors have been reported (Wittig et al., 2013), integration within a biosensor device 

has not been effectively demonstrated. Prompted by proof-of-principle biosensors and cell-
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based assays relying on 3D cell cultures (Cevenini et al., 2017; Dubiak-Szepietowska et al., 

2016), we developed a new 3D cell format in which spheroids are immobilized into a 3D 

cartridge that plugs into a smartphone. Here, we report a dual-color BL spheroid-biosensor 

platform, in which a red-emitting luciferase is induced by the presence of pro-inflammatory 

stimuli and a green-emitting reporter is constitutively expressed and used as a viability 

control. The presence of inflammatory compounds in the sample will increase the red BL 

signal and the independent viability green signal will allow us to correct the response for 

nonspecific effects or general toxicity activity. Thus, this dual sensor will distinguish between 

pro-inflammatory agents and chemicals having general cell toxicity.  

 

3.1. Fabrication of 3D cell-culture cartridges and smartphone accessories 

As shown in Fig. 2a, we developed a customized 3D-printed cartridge (40x40 mm) 

containing 16 square wells (5 mm wide and 5 mm deep). The cartridge was printed with 

black PLA over a resin film containing 500 µm microstructures with 400 µm depth. We could 

not opt for ABS as the printing material, although its feasibility for integrating bioluminescent 

cell biosensors was recently reported (Cevenini et al., 2016), because it requires a heating 

bed. Heat beds are commonly used in 3D printing to avoid warping and improve print quality; 

however, the temperatures used for ABS (100-110°C) would destroy the cone-shaped 

microstructures (about 200 cones per cm2). Therefore, we used black PLA, which does not 

require a heated bed and preserves the microstructures.  

The cartridge surface was then treated with poly-HEMA to facilitate cell-cell rather than cell-

plastic interactions, thus promoting cell aggregation into spheroids. Poly-HEMA hydrogels 

are polymers approved by federal agencies for the use in several biomedical and 

pharmaceutical applications. The non-toxicity and the biocompatibility of the poly-HEMA 

makes it suitable for most biotechnological applications. Moreover, thanks to the presence 
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of polar groups and hydrophobic -methyl groups, the polymer has excellent chemical 

properties in terms of mechanical strength stability and compatibility with water (Kim et al., 

2015).  

HEK293 were selected to provide endogenous expression of TNF receptor, a potent 

mediator of inflammation, as they aggregate very quickly and form spheroids within a few 

hours (Fig. 2b, 2c). After an overnight incubation, HEK293 spheroids of 19020 µm were 

formed. The sphericity factor () of 20 spheroids was calculated according to equation (1) 

obtaining an average value of 0.930.02, which is consistent with that obtained in 

commercial 96-well micropatterned plates (Cevenini et al., 2017). This cartridge 

configuration provides 16 wells, each containing approximately 50 spheroids, thus providing 

a ready-to-use platform that can be snapped into the smartphone and imaged. 

[Fig. 2 preferred position] 

 

3.2. Bioluminescence characterization of red and green-emitting 3D spheroids with 

the smartphone 

To fully exploit the possibilities offered by the color BI-CMOS camera of smartphones, we 

set up a dual-color biosensor based on the expression of two luciferases emitting at different 

wavelengths.  The implementation of dual-color imaging represents a significant upgrade in 

smartphone-based devices (Wang et al., 2017); nevertheless, the implementation of low-

light emitting probes, such as bioluminescent reporters, challenges the sensitivity of the 

smartphone integrated camera. Therefore we selected two highly stable mutant luciferases, 

PpyGR-TS and PpyRE-TS luciferases that showed advantageous properties, i.e., high 

emission intensity, glow-type kinetics (Branchini et al., 2007), and high pH stability, as the 

viability control and inflammation reporter, respectively. These thermostable human codon 
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optimized luciferases (Fig. 3a), with emission maxima at 549 nm and 615 nm and 

corresponding bandwidths at half maxima of 70 nm and 50 nm, respectively, provide well 

separated emission spectra using the same D-luciferin substrate. These optimal spectral 

features enable the analysis of complex matrices. Thus, the assay is highly cost effective. 

In addition, the BL emission spectra of these luciferases nearly overlap the spectral 

transmittance of the green and red filters of the Bayer matrix in the smartphone CMOS 

sensor, allowing sensitive detection of BL signals.  

 

[Fig. 3 preferred position] 

 

In this work, we took advantage of the smartphone Nokia Lumia 1020, which is equipped 

with a camera with built-in ProCam application enabling manual selection of different 

parameters. In particular, the possibility to set the shutter speed up to 4s and to use ISO 

values up to 4000, makes this smartphone suitable for low-light imaging applications. To 

optimize the acquisition of BL signals, we imaged HEK293 spheroids expressing the green- 

or red-emitting luciferase, using different exposure times and ISO values from 100 to 4000. 

Use of a low exposure time (i.e. 1 or 2 s) in combination with high ISO values, resulted in 

noisy images (data not shown). At ISO 800, about 95% of green luciferase emission is 

acquired in the green channel and only a 5% is detected in the red channel (and vice versa) 

(Fig. 3b). The crosstalk between channels increases with higher sensitivity settings and the 

signal to background ratio is not significantly improved (less than 8%). At ISO 1600, a 

significant interference was observed, with about 25% of PpyGR-TS emission detected in 

the red channel and 15% of PpyRE-TS acquired in the green channel. For this reason, for 

the quantification of the spheroid-biosensor response, we acquired BL images for 4 s at ISO 

800 to achieve the best sensitivity and lowest crosstalk between the two luciferases.  
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3.3. Optimization and analytical performance of smartphone-based dual-color 

inflammation biosensor  

It is recognized that 3D cell cultures are stable for longer lifespans than 2D cell cultures and 

provide more suitable tools to develop cell biosensors with adequate responsiveness over 

time. For example, Bhise et al. reported that bioprinted hepatic spheroids remained 

functional during a 30 day culture period (Bhise et al., 2016). However, the reported liver-

on-a-chip platform, used for toxicity assessment, required continuous perfusion and cannot 

be implemented into a low-cost platform. Moreover, another issue to be considered is related 

to the limited diffusional transport posed by the 3D structure of the spheroids. Multicellular 

aggregates are composed of proliferating cells, non-proliferating viable cells, and necrotic 

cells. The presence of multiple phenotypes mimics the in vivo tumor physiology and may 

represent an advantage in cancer research (Jeong et al., 2012). However, this could 

represent a caveat in biosensing with bioluminescent reporters due to the limited availability 

of the analytes and substrates for the chemical reaction, as well as oxygen, which is required 

for all luciferase-based reactions. In spheroids with a diameter of 150 µm, the majority of 

cells have sufficient oxygen for BL reactions, with a negligible necrotic core composed of 

only 2% of cells (Langan et al., 2016). Therefore, we decided to obtain spheroids in the 

range of 150-200 µm.  

In order to obtain a stand-alone spheroid-based biosensing platform for on-site analysis, we 

integrated the spheroid-biosensors in a ready-to-use 3D printed cartridge. To this end, BL 

spheroid biosensors were immobilized with a medium solution containing 5% v/v gelatin 

from porcine skin type A. It has been reported that the inclusion of gelatin microparticles 

increases the stiffness of the spheroid microenvironment (Baraniak et al., 2012), enabling 
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quick and easy interaction with the sample (and the availability of the chemical substrate for 

the BL reaction).   

We aimed at obtaining color-coded visual information in which the green emission is 

associated with “safe”; while, the red corresponds to “harmful” samples. Since the green 

luciferase is constitutively expressed, the presence of compounds able to activate the 

intracellular inflammatory pathway will produce a yellowish to orange color proportional to 

induction levels and to general toxicity effects. Obtaining a color emission which covers a 

wide range of green to red hues, largely depends on the relative expression of the two 

luciferases. This can be tuned by adjusting the promoter strength and the ratio between the 

two reporter plasmids used for cell transfection. We first expressed the green luciferase 

under the strong CMV promoter (pCMV_PpyGR-TS). When incubating HEK293 co-

transfected with pNFkB_PpyRE-TS and pCMV_PpyGR-TS with TNFα concentrations in the 

range 0.5-20ng/mL, the signal of constitutive green-emitting luciferase was too high, 

overlapping the red channel. It was not possible to perform spectral resolution to 

quantitatively elaborate the corrected inflammatory response (data not shown). Therefore, 

to reduce the expression level of PpyGR-TS, the weaker Herpes simplex virus thymidine 

kinase promoter was selected (Qin et al., 2010). We then optimized the transfection 

protocols to achieve the optimum balance between red and green emission. Cells were 

transfected with a 1:1 and 1:3 ratio of pTK_PpyGR-TS and pNFkB_PpyRE-TS vectors. 

Using the same amount of reporter plasmids, the LOD for TNF  was 20 ng/mL, limiting the 

applicability of the assay. Therefore, a ratio of 1:3 control: reporter vector was selected, 

providing the full range of “traffic light” emissions. Fig.4a shows a typical image obtained 

with the smartphone by incubating the spheroid-biosensor with increasing concentrations of 

TNF. Spheroids expressing only PpyRE-TS induced with 20 ng/mL TNF and spheroids 
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incubated with vehicle only are also present in each cartridge as positive and negative 

inflammatory controls, respectively.  

Multicolor cell-based assays performed with conventional instrumentation (i.e. luminometer) 

usually relies on the use of optical emission filters to acquire the BL signals from luciferases 

emitting at different wavelength and on a spectral unmixing algorithm for the separation of 

emitted light. Despite the spectral overlap between the two luciferases, the low crosstalk 

between channels (5%) allows the user to simply quantify the BL emission of PpyGR-TS 

and PpyRE-TS on green- and red-channel split images (Fig. 4b), respectively. The BL signal 

of both luciferases in the blue channel is negligible (less than 1%) and is excluded from 

calculations. The BL signal of green- and red-emitting luciferases were quantified on 

corresponding images, by selecting a square ROI around each well, and plotted as the mean 

 SD of duplicate wells. A mirror was also placed under the cartridge to increase the 

acquisition of BL emission. Back-reflection towards the CMOS sensor through the 

transparent gelatin layer provided an increase of about 40% in the light collected.  

 

 

[Fig. 4 preferred position] 

 

The calibration curve for TNF was obtained by calculating the corrected BL signal (PpyRE-

TS/PpyGR-TS emission ratio) for each concentration and by plotting the corresponding fold 

response with respect to the control (CTR) (Fig.4c). The ratiometric measurement provides 

a more robust analysis since aspecific effects on cell viability as well as small variations in 

spheroid number and dimension are corrected. In optimized conditions, i.e. a cartridge with 

50 spheroids/well transfected at a 1:3 viability:inflammatory reporter vector ratio, 5 h 

incubation, and acquisition for 4 s (ISO 800), the smartphone-based biosensor provides a 
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LOD of 0.15  0.05 ng/mL and an EC50 of 1.0 0.1 ng/mL TNF. Indeed, reporter-gene 

assays were suitable for the high throughput quantification of residual drug activity and anti-

drug neutralizing antibody response to TNFα antagonists in serum samples (Lallemand et 

al., 2011). Therefore, a potential application could be as point-of-care diagnostics for 

patients with inflammatory disease, such as Crohn’s disease, treated with a TNFα 

antagonist.  

3.4. Selectivity of the biosensor 

To assess the selectivity of the biosensor we evaluated the inflammatory activity and toxicity 

of different toxic chemicals having dissimilar modes of action and classified as priority 

substances or pollutants by the European Union (EU) and the United States Environmental 

Protection Agency (EPA). We analysed the activity of these compounds at the Maximum 

Allowable Concentration for inland surface waters defined in the Environmental Quality 

Standards (MAC-EQS) of Directive 2013/39/EU. We selected isoproturon, an agricultural 

herbicide of low acute toxicity and medium toxicity after short- and long-term exposures, 

which has been detected in surface and ground water at concentrations below 0.1 µg/L 

(WHO, 2003). We also analysed aclonifen, a biocide causing oxidative damage via the 

formation of reactive oxygen species (ROS) (Almeida et al., 2017) and naphthalene, whose 

exposure has been associated with hemolytic anemia and damage to the liver, which has 

been classified as a possible human carcinogen by EPA (Höke et al., 1998). As expected, 

at the tested concentrations, i.e., 0.12 µg/L for aclonifen, 130 µg/L for naphthalene and 1.0 

µg/L for isoproturon, these compounds did not produce any activation of the NF-κB pathway 

and did not show significant cell toxicity. Pollutants, and in particular pesticides, may occur 

at low concentrations in mixtures with other chemicals (Hernandez, et al 2013). Therefore, 

from a toxicological perspective, it is of paramount importance to assess the overall activity 
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of a sample. Since a potential application of the proposed biosensor is the evaluation of total 

toxicity of an environmental sample to rapidly identify potential threats to human and animal 

health, we also analysed mixtures of these compounds which could be present in inland 

surface waters, encompassing rivers, lakes, and artificial water bodies. Interestingly, the 

mixtures Mix 3 (aclonifen 0.12 µg/L and naphthalene 130 µg/L) and Mix 4 (aclonifen 0.12 

µg/L, naphthalene 130 µg/L, and isoproturon 1µg/L) presented significant toxic effects with 

a drop in cell viability of 20±5% and 51±8%, respectively (Fig. 5a).  

 

[Fig. 5 preferred position] 

 

 

3.5. Simulation of real sample analysis  

As proof of concept, the response of the dual-color biosensor was tested using spiked 

samples containing different concentration of PMA, a NF-kB activator that is used in 

pharmacology as a potent tumor promoter and for activating protein kinase C (Lee et al., 

2002). PMA is extracted from the Jatropha curcas plant, which gained importance in recent 

years as it grows in different soil conditions and its seeds are a source of oil for biofuel 

production (EFSA CONTAM Panel, 2015).The by-product called Jatropha meal has a high 

nutritional value and may be used as a feed ingredient for the animal industry. However, due 

to the presence of phorbol esters, well-known toxicants having tumor promoting activity, 

detoxification treatments are necessary prior to its use in animal feed. PMA in fact induces 

malignant transformation of cells via the activation of c-Jun and c-Fos. The subsequent 

proinflammatory response to tumor promotion is then mediated through activation of NF-κB 

(Goel et al., 2007). . A simple biosensing platform might be useful for the evaluation of 
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treatment efficacy and to monitor the phorbol esters content in Jatropha derived products or 

possible contamination in the environment (e.g. water).  

To create a user-friendly platform, each cartridge also provides a traffic light like response 

as a reference for a quick evaluation of the sample’s activity. This was obtained by including 

i) spheroids transfected with reporter vector only and induced with 10 ng/mL TNF, which 

provide a red emission (positive control, Ctr+), ii) spheroids transfected with both reporter 

and control vectors and induced with 2.5 ng/mL TNF, which provide a yellow-orange 

emission, and iii) spheroids transfected with both reporter and control vectors and incubated 

with vehicle (DMSO 1%), resulting in green-emission only (negative control, Ctr-) (Fig.6).  

 

[Fig. 6 preferred position] 

 

By testing the same concentration of PMA (10 nM) the response of the biosensor was 

reproducible with an intra-assay variability of 13% and an inter-assay variability of 17%, the 

latter obtained with different cartridges.   

It is known that inflammatory pathways and cellular oxidative stress are interconnected and 

reactive oxygen intermediates (e.g., H2O2) act as NF-κB inducers (Legrand-Poels et al., 

1995). Therefore, to better understand if PMA effects were due to pure NF-κB activation or 

mediated by cellular oxidative stress, we investigated the effect of H2O2 on the biosensor. 

As shown in Fig. 5b, only at a concentration of 10 mM wasH2O2 able to decrease cell viability 

(27±5%) within the 5 hours of incubation. None of the tested H2O2 concentrations (range 

0.5-10 mM) produced pro-inflammatory effects (Fig. 5b).  

We evaluated the possibility to store cartridges at room temperature (25°C) for one week. 

To this end we replaced DMEM with L15 medium, which is formulated for use in carbon 

dioxide free systems. In a previous work, ready-to-use cartridges with immobilized HEK293 
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cells showed a 40 ± 7% drop in bioluminescence after 48 hours at 25°C storage (Cevenini 

et al., 2016a). Such loss in viability caused a non-reliable response after 2 days storage of 

the cartridge.  On the other hand, spheroids showed a much slower decrease in viability (20 

± 8% drop in bioluminescence after one week storage at room temperature),  which, in 

conjunction with the use of internal correction, provided a correct evaluation of inflammatory 

activity of the samples even after seven days. For example sample S3 containing 1 µM PMA 

showed corrected inflammatory activities of 49% and 47% compared to Ctr+ (10 ng/mL 

TNF), at day 0 and after 7 days of storage, respectively (corresponding viabilities were 91± 

8 % and 75± 8 %).  

As expected, an higher variability between duplicates was reported (CV%= 20%) after one 

week storage, however, due to their higher stability, spheroids provided a significant 

improvement in the cells’ shelf-life when compared to cells immobilized in conventional 

matrices. These pre-loaded cartridges could be shipped or transported with commercially 

available portable incubators directly to the site were the analysis is required. This greatly 

simplifies the transport and use of our biosensor in laboratories non equipped with cell-

culture facilities (e.g., cell culture incubators with CO2 controlled atmosphere) and benchtop 

instrumentation for bioluminescence detection. 

 

 

 

5. CONCLUSION   

 

We implemented a multicolor bioluminescent 3D cell  biosensor in a smartphone-based 

platform. The biosensor consists of immobilized spheroids of human cell lines expressing 

red- and green light emitting luciferase under the regulation of the NFkB pathway and a 
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constitutive promoter, respectively. The 3D cell biosensor enables the assessment of the 

actual toxicity and inflammatory effects of a sample, rather than identifying single 

constituents. Such a biosensor could be thus very helpful in those situations in which 

mixtures of compounds with unknown toxicities and different mode of action are present, 

such as the aquatic environment. From this perspective, the proposed biosensing platform 

would aim to become a useful tool for an initial screening of environmental samples or toxic 

substances on-site, thus identifying samples for a more accurate chemical analysis. 

However, it must be pointed out that 3D cell models still do not compete with the robustness 

of microbial biosensors based on bacterial or yeast cells and future work will regard the 

development of new immobilization matrices to improve the shelf-life of 3D cell models.  

. Moreover, spheroids obtained from different engineered cell lines could be obtained to 

enlarge the spectrum of target bioactivities, including liver toxicity, genotoxicity, and oxidative 

stress response.  
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Figure captions 

 

Fig. 1. Schematic representation of the genetically engineered bioluminescent cells and 

inflammation smartphone-based biosensor integrating dual-color bioluminescent 3D 

spheroids.  

 

Fig. 2. 3D-printed smartphone accessories and spheroid formation; (a) Picture of the 3D 

printed cartridge made of PLA printed over a microspace bottom sheet; (b) HEK293-cells 

seeded into the cell cartridge and imaged at time 0 or after 4 h, 8 h, and 18 h overnight 

incubation (c); (d) Smartphone black-box accessory; (e) 3D printed cartridge holder 

comprising a mirror; (f) assembled smartphone-based device. 

 

Fig. 3. (a) BL emission spectra of HEK293-spheroids expressing green (PpyGR-TS) and 

red-emitting (PpyRE-TS) thermostable luciferase mutants obtained with Varioskan Flash 

luminometer; (b) Color image of green and red-emitting luciferases in HEK293-spheroids 

acquired with the smartphone for 4s at ISO 800 and same image split into green and red 

channels to evaluate the crosstalk between PpyGR-TS and PpyRE-TS emission.  

 

Fig. 4. (a) Image acquired with the smartphone obtained by incubating the spheroid-

biosensor with increasing concentrations of TNF; (b) Green- and red-channel images 

corresponding to the PpyGR-TS (viability signal) and PpyRE-TS (inflammatory response) 

emission; (c) corrected dose-response curve for TNF. 

 

Fig. 5. (a) Results obtained by incubating the 3D cell biosensor with chemicals for 5 hours 

at room temperature (25 °C) and imaged with the smartphone. Positive inflammatory control 
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C+: 10 ng/mL TNFα; Ref.: 2.5 ng/mL TNFα, Viability control Ctr-: doubly distilled water; I: 

isoproturon 1.0 µg/L; N: naphthalene 130 µg/L; A: aclonifen 0.12 µg/L; M1: mixture solution 

containing isoproturon 1.0 µg/L and naphthalene 130 mg/L; M2: mixture solution containing 

isoproturon 1mg/L and aclonifen 0.12 mg/L; M3: mixture solution containing aclonifen 0.12 

mg/L and naphthalene 130 mg/L; M4: mixture solution containing aclonifen 0.12 mg/L, 

naphthalene 130 mg/L and isoproturon 1 mg/L). (b) Results obtained with 5 h incubation at 

25°C of the 3D biosensor with different concentrations of H2O2 (concentration range 0.5-10 

mM). Cell viability was normalized with respect to the green emission of control wells, while 

inflammatory activity was reported as the fold induction of the red-calibrator emission. 

Values are the mean±standard deviations of three experiments performed in duplicate. 

 

Fig. 6. (a) Picture of the 3D printed cartridge containing the immobilized spheroid-biosensor. 

Each cartridge can be used to analyze up to five samples in duplicate. It contains a positive 

control (Ctr+), a reference, and a negative control (Ctr-) resulting in a sort of “traffic light” 

response for direct comparison of the sample’s activity; (b) BL image, obtained with the 

smartphone, of a cell cartridge incubated with different concentrations of PMA: S1 (10 µM 

PMA), S2 (1 nM PMA), S3 (1 µM PMA), S4 (50 nM PMA), S5 (0.1 nM PMA), Ctr+ (10 ng/mL 

TNF), Ref. (2.5 ng/mL TNF), Ctr- (1% DMSO); (c) Results obtained after image 

elaboration of the tested samples. Cell viability was normalized with respect to the green 

emission of control wells, while inflammatory activity was reported as the fold induction of 

the red-calibrator emission. 
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