16 research outputs found

    First measurement of the 14N/15N ratio in the analogue of the Sun progenitor OMC-2 FIR4

    Get PDF
    We present a complete census of the 14N/15N isotopic ratio in the most abundant N-bearing molecules towards the cold envelope of the protocluster OMC-2 FIR4, the best known Sun progenitor. To this scope, we analysed the unbiased spectral survey obtained with the IRAM-30m telescope at 3mm, 2mm and 1mm. We detected several lines of CN, HCN, HNC, HC3N, N2H+, and their respective 13C and 15N isotopologues. The lines relative fluxes are compatible with LTE conditions and moderate line opacities have been corrected via a Population Diagram method or theoretical relative intensity ratios of the hyperfine structures. The five species lead to very similar 14N/15N isotopic ratios, without any systematic difference between amine and nitrile bearing species as previously found in other protostellar sources. The weighted average of the 14N/15N isotopic ratio is 270 +/- 30. This 14N/15N value is remarkably consistent with the [250-350] range measured for the local galactic ratio but significantly differs from the ratio measured in comets (around 140). High-angular resolution observations are needed to examine whether this discrepancy is maintained at smaller scales. In addition, using the CN, HCN and HC3N lines, we derived a 12C/13C isotopic ratio of 50 +/- 5.Comment: Accepted for publication in ApJ ; 19 pages, 5 tables, 12 figure

    Rotation in the NGC 1333 IRAS 4C Outflow

    Full text link
    We report molecular line observations of the NGC 1333 IRAS 4C outflow in the Perseus Molecular Cloud with the Atacama Large Millimeter/Submillimeter Array. The CCH and CS emission reveal an outflow cavity structure with clear signatures of rotation with respect to the outflow axis. The rotation is detected from about 120 au up to about 1400 au above the envelope/disk mid-plane. As the distance to the central source increases, the rotation velocity of the outflow decreases while the outflow radius increases, which gives a flat specific angular momentum distribution along the outflow. The mean specific angular momentum of the outflow is about 100 au km/s. Based on reasonable assumptions on the outward velocity of the outflow and the protostar mass, we estimate the range of outflow launching radii to be 5-15 au. Such a launching radius rules out that this outflow is launched as an X-wind, but rather, it is more consistent to be a slow disk wind launched from relatively large radii on the disk. The radius of the centrifugal barrier is roughly estimated, and the role of the centrifugal barrier in the outflow launching is discussed.Comment: Accepted to ApJ. 29 pages, 8 figure

    Sub-arcsecond Kinematic Structure of the Outflow in the Vicinity of the Protostar in L483

    Full text link
    The bipolar outflow associated with the Class 0 low-mass protostellar source (IRAS 18148-0440) in L483 has been studied in the CCH and CS line emission at 245 and 262 GHz, respectively. Sub-arcsecond resolution observations of these lines have been conducted with ALMA. Structures and kinematics of the outflow cavity wall are investigated in the CS line, and are analyzed by using a parabolic model of an outflow. We constrain the inclination angle of the outflow to be from 75 degree to 90 degree, i.e. the outflow is blowing almost perpendicular to the line of sight. Comparing the outflow parameters derived from the model analysis with those of other sources, we confirm that the opening angle of the outflow and the gas velocity on its cavity wall correlate with the dynamical timescale of the outflows. Moreover, a hint of a rotating motion of the outflow cavity wall is found. Although the rotation motion is marginal, the specific angular momentum of the gas on the outflow cavity wall is evaluated to be comparable to or twice that of the infalling-rotating envelope of L483

    Chemical survey toward young stellar objects in the Perseus molecular cloud complex

    Get PDF
    Chemical diversity of the gas in low-mass protostellar cores is widely recognized. In order to explore its origin, a survey of chemical composition toward 36 Class 0/I protostars in the Perseus molecular cloud complex, which are selected in an unbiased way under certain physical conditions, has been conducted with IRAM 30 m and NRO 45 m telescope. Multiple lines of C2H, c-C3H2 and CH3OH have been observed to characterize the chemical composition averaged over a 1000 au scale around the protostar. The derived beam-averaged column densities show significant chemical diversity among the sources, where the column density ratios of C2H/CH3OH are spread out by 2 orders of magnitude. From previous studies, the hot corino sources have abundant CH3OH but deficient C2H, their C2H/CH3OH column density ratios being relatively low. In contrast, the warm-carbon-chain chemistry (WCCC) sources are found to reveal the high C2H/CH3OH column density ratios. We find that the majority of the sources have intermediate characters between these two distinct chemistry types. A possible trend is seen between the C2H/CH3OH ratio and the distance of the source from the edge of a molecular cloud. The sources located near cloud edges or in isolated clouds tend to have a high C2H/CH3OH ratio. On the other hand, the sources having a low C2H/CH3OH ratio tend to be located in inner regions of the molecular cloud complex. This result gives an important clue to an understanding of the origin of the chemical diversity of protostellar cores in terms of environmental effects.Comment: Accepted for publication in ApJ

    Seeds of Life in Space (SOLIS). IX. Chemical Segregation of SO 2 and SO toward the Low-mass Protostellar Shocked Region of L1157

    Get PDF
    International audienceWe present observations of SO and SO 2 lines toward the shocked regions along the L1157 chemically rich outflow, taken in the context of the Seeds of Life in Space IRAM Northern Extended Millimeter Array Large Program, and supported by data from the Submillimeter Array and IRAM-30 m telescope at 1.1-3.6 mm wavelengths. We simultaneously analyze, for the first time, all of the brightest shocks in the blueshifted lobe, namely, B0, B1, and B2. We found the following. (1) SO and SO 2 may trace different gas, given that the large(-scale) velocity gradient analysis indicates for SO 2 a volume density (-10 10 cm 5 6 3) denser than that of the gas emitting in SO by a factor up to an order of magnitude. (2) Investigating the 0.1 pc scale field of view, we note a tentative gradient along the path of the precessing jet. More specifically, () c SO SO 2 decreases from the B0-B1 shocks to the older B2. (3) At a linear resolution of 500-1400 au, a tentative spatial displacement between the two emitting molecules is detected, with the SO peak closer (with respect to SO 2) to the position where the recent jet is impinging on the B1 cavity wall. Our astrochemical modeling shows that the SO and SO 2 abundances evolve on timescales less than about 1000 years. Furthermore, the modeling requires high abundances (2×10 −6) of both H S H 2 and S/H injected in the gas phase due to the shock occurrence, so prefrozen OCS only is not enough to reproduce our new observations
    corecore