3,386 research outputs found

    Nonequilibrium Phase Transitions in Directed Small-World Networks

    Full text link
    Many social, biological, and economic systems can be approached by complex networks of interacting units. The behaviour of several models on small-world networks has recently been studied. These models are expected to capture the essential features of the complex processes taking place on real networks like disease spreading, formation of public opinion, distribution of wealth, etc. In many of these systems relations are directed, in the sense that links only act in one direction (outwards or inwards). We investigate the effect of directed links on the behaviour of a simple spin-like model evolving on a small-world network. We show that directed networks may lead to a highly nontrivial phase diagram including first and second-order phase transitions out of equilibrium.Comment: 4 pages, RevTeX format, 4 postscript figs, uses eps

    Automating decision making to help establish norm-based regulations

    Full text link
    Norms have been extensively proposed as coordination mechanisms for both agent and human societies. Nevertheless, choosing the norms to regulate a society is by no means straightforward. The reasons are twofold. First, the norms to choose from may not be independent (i.e, they can be related to each other). Second, different preference criteria may be applied when choosing the norms to enact. This paper advances the state of the art by modeling a series of decision-making problems that regulation authorities confront when choosing the policies to establish. In order to do so, we first identify three different norm relationships -namely, generalisation, exclusivity, and substitutability- and we then consider norm representation power, cost, and associated moral values as alternative preference criteria. Thereafter, we show that the decision-making problems faced by policy makers can be encoded as linear programs, and hence solved with the aid of state-of-the-art solvers

    Dental Treatment under General Anesthesia in Healthy and Medically Compromised/Developmentally Disabled Children: A Comparative Study

    Get PDF
    Aim: To compare the type, number of procedures and working time of dental treatment provided under dental general anesthesia (DGA) in healthy and medically compromised/developmentally disabled children (MCDD children). Design: This cross-sectional prospective study involved 80 children divided into two groups of 40 children each. Group 1 consisted of healthy and Group 2 consisted of MCDD children. Results: Healthy children needed more working time than MCDD children, the means being 161±7.9 and 84±5.7 minutes, respectively (P= 0.0001). Operative dentistry and endodontic treatments showed a significant statistical difference (P= 0.0001). The means of procedures were 17±5.0 for healthy children and 11±4.8 for MCDD children (P= 0.0001). Conclusions: Healthy children needed more extensive dental treatment than MCDD children under DGA. The information from this sample of Mexican children could be used as reference for determining trends both within a facility as well as in comparing facilities in cross-population studies

    A model to support collective reasoning: Formalization, analysis and computational assessment

    Full text link
    Inspired by e-participation systems, in this paper we propose a new model to represent human debates and methods to obtain collective conclusions from them. This model overcomes drawbacks of existing approaches by allowing users to introduce new pieces of information into the discussion, to relate them to existing pieces, and also to express their opinion on the pieces proposed by other users. In addition, our model does not assume that users' opinions are rational in order to extract information from it, an assumption that significantly limits current approaches. Instead, we define a weaker notion of rationality that characterises coherent opinions, and we consider different scenarios based on the coherence of individual opinions and the level of consensus that users have on the debate structure. Considering these two factors, we analyse the outcomes of different opinion aggregation functions that compute a collective decision based on the individual opinions and the debate structure. In particular, we demonstrate that aggregated opinions can be coherent even if there is a lack of consensus and individual opinions are not coherent. We conclude our analysis with a computational evaluation demonstrating that collective opinions can be computed efficiently for real-sized debates

    Interaction of Flexural Phonons with Electrons in Graphene: A Generalized Dirac Equation in Corrugated Surfaces

    Full text link
    A generalized Dirac equation is derived in order to describe charge carriers moving in corrugated graphene, which is the case for temperatures above 10{\deg}K due to the presence of flexural phonons. Such interaction is taken into account by considering an induced metric, in the same spirit as the general relativity approach for the description of fermionic particle moving in a curved space-time. The resulting equation allows to include in a natural way the presence of other phonon branches as well as an external electromagnetic field. It also predicts non-linear effects which are not present in the usual vector potential approximation used in most of publications on the subject, as well as the possibility of controlling electronic conductivity using pure sinusoidal strain fields. The non-linear terms are important at high temperatures, and can also lead to interesting effects, like e.g. resonances between flexural phonons and external electromagnetic fields

    Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study

    Get PDF
    Interactions between macrophages and adipocytes are early molecular factors influencing adipose tissue (AT) dysfunction, resulting in high leptin, low adiponectin circulating levels and low-grade metaflammation, leading to insulin resistance (IR) with increased cardiovascular risk. We report the characterization of AT dysfunction through measurements of the adiponectin/leptin ratio (ALR), the adipo-insulin resistance index (Adipo-IRi), fasting/postprandial (F/P) immunometabolic phenotyping and direct F/P differential gene expression in AT biopsies obtained from symptom-free adults from the GEMM family study. AT dysfunction was evaluated through associations of the ALR with F/P insulin-glucose axis, lipid-lipoprotein metabolism, and inflammatory markers. A relevant pattern of negative associations between decreased ALR and markers of systemic lowgrade metaflammation, HOMA, and postprandial cardiovascular risk hyperinsulinemic, triglyceride and GLP-1 curves was found. We also analysed their plasma non-coding microRNAs and shotgun lipidomics profiles finding trends that may reflect a pattern of adipose tissue dysfunction in the fed and fasted state. Direct gene differential expression data showed initial patterns of AT molecular signatures of key immunometabolic genes involved in AT expansion, angiogenic remodelling and immune cell migration. These data reinforce the central, early role of AT dysfunction at the molecular and systemic level in the pathogenesis of IR and immunometabolic disorders

    Adherence Evaluation of a MacPherson Suspension under EuSAMA Norm in a Mathematical Model and one Multibody

    Get PDF
    En este trabajo se realiza una simulación computacional, para dar respuesta a un problema de dinámica asociado a la evaluación de la adhesión en sistemas de suspensión. El proceso inicia con el levantamiento de las geometrías más representativas de un sistema MacPherson de un Nissan Sentra B13, donde cada uno de los dispositivos se crea y ensambla en un software CAD para dar solución dinámica en un paquete CAE multicuerpo. Posteriormente se crea un modelo matemático cuyas ecuaciones diferenciales se generan fundamentadas en la segunda ley de Newton y se resuelven en Simulink de Matlab®. Finalizado el proceso de elaboración de los modelos se alimentan las variables con la información precisa del vehículo de estudio para obtener las gráficas que dan respuesta al protocolo de la prueba EuSAMA (European Shock Absorber Manufaturers Association) para el análisis de la adhesión. Los resultados obtenidos evidencian que los modelos desarrollados son confiables cuando se comparan con la prueba experimental; además, se observa que la disminución del coeficiente de amortiguamiento compromete la adhesión del vehículo en la vía, afectando la estabilidad y maniobrabilidad.A computational simulation is Implemented, in order to response to a problem of dynamics associated With The assessment of adherence in suspension systems. The process begins with the lifting of the most representative geometries of a MacPherson system of a Nissan Sentra B13, where each of the devices is created and assembled into a CAD software to give a dynamic solution on a CAE multibody package. Afterwards a mathematical model was created whose differential equations are generated substantiated on Newton's second law and this are resolved using Matlab-Simulink applications. Once the model developing process is over, the variables are fed with accurate information of the studied vehicle to obtain the graphs that give an answer to EuSAMA (European Shock Absorber Manufacturers Association) test protocol for the adherence analysis. The results presented show the reliability of the developed models when compared with the experimental test; furthermore, it demonstrates that the decrease of the damping coefficient compromises the vehicle´s adherence on the track, affecting its stability and maneuverability
    corecore