2,760 research outputs found

    The Atacama Cosmology Telescope: CO(J = 3 - 2) mapping and lens modeling of an ACT-selected dusty star-forming galaxy

    Get PDF
    We report Northern Extended Millimeter Array (NOEMA) CO(J=32J = 3 - 2) observations of the dusty star-forming galaxy ACT-S\,J020941+001557 at z=2.5528z = 2.5528, which was detected as an unresolved source in the Atacama Cosmology Telescope (ACT) equatorial survey. Our spatially resolved spectral line data support the derivation of a gravitational lens model from 37 independent velocity channel maps using a pixel-based algorithm, from which we infer a velocity-dependent magnification factor μ722\mu \approx 7-22 with a luminosity-weighted mean \left\approx 13. The resulting source-plane reconstruction is consistent with a rotating disk, although other scenarios cannot be ruled out by our data. After correction for lensing, we derive a line luminosity LCO(32)=(5.53±0.69)×1010Kkms1pc2L^{\prime}_{\rm CO(3-2)}= (5.53\pm 0.69) \times 10^{10}\,{\rm \,K\,km\,s^{-1}\,pc^{2}}, a cold gas mass Mgas=(3.86±0.33)×1010MM_{{\rm gas}}= (3.86 \pm 0.33) \times 10^{10}\,M_{\odot}, a dynamical mass Mdynsin2i=3.91.5+1.8×1010MM_{\rm dyn}\,{\rm sin}^2\,i = 3.9^{+1.8}_{-1.5} \times 10^{10}\,M_{\odot}, and a gas mass fraction fgascsc2i=1.00.4+0.8f_{\rm gas}\,{\rm csc}^2\,i = 1.0^{+0.8}_{-0.4}. The line brightness temperature ratio of r3,11.6r_{3,1}\approx 1.6 relative to a Green Bank Telescope CO(J=10J=1-0) detection may be elevated by a combination of external heating of molecular clouds, differential lensing, and/or pointing errors.Comment: 8 pages, 5 figures, accepted to Ap

    Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of Salmonella by Nitrate Respiration

    Get PDF
    Information on how emerging pathogens can invade and persist and spread within host populations remains sparse. In the 1980s, a multidrug-resistant Salmonella enterica serotype Typhimurium clone lysogenized by a bacteriophage carrying the sopE virulence gene caused an epidemic among cattle and humans in Europe. Here we show that phage-mediated horizontal transfer of the sopE gene enhances the production of host-derived nitrate, an energetically highly valuable electron acceptor, in a mouse colitis model. In turn, nitrate fuels a bloom of S. Typhimurium in the gut lumen through anaerobic nitrate respiration while suppressing genes for the utilization of energetically inferior electron acceptors such as tetrathionate. Through this mechanism, horizontal transfer of sopE can enhance the fitness of S. Typhimurium, resulting in its significantly increased abundance in the feces

    Physical Characterization of 2015 JD(1) : A Possibly Inhomogeneous Near-Earth Asteroid

    Get PDF
    The surfaces of airless bodies such as asteroids are exposed to many phenomena that can alter their physical properties. Bennu, the target of the OSIRIS-REx mission, has demonstrated how complex the surface of a small body can be. In 2019 November, the potentially hazardous asteroid 2015 JD(1) experienced a close approach of 0.033 1 au from the Earth. We present results of the physical characterization of 2015 JD(1) based on ground-based radar, spectroscopy, and photometric observations acquired during 2019 November. Radar polarimetry measurements from the Arecibo Observatory indicate a morphologically complex surface. The delay-Doppler images reveal a contact binary asteroid with an estimated visible extent of similar to 150 m. Our observations suggest that 2015 JD(1) is an E-type asteroid with a surface composition similar to aubrites, a class of differentiated enstatite meteorites. The dynamical properties of 2015 JD(1) suggest that it came from the nu (6) resonance with Jupiter, and spectral comparison with major E-type bodies suggests that it may have been derived from a parental body similar to the progenitor of the E-type (64) Angelina. Significantly, we find rotational spectral variation across the surface of 2015 JD(1) from the red to blue spectral slope. Our compositional analysis suggests that the spectral slope variation could be due to the lack of iron and sulfides in one area of the surface of 2015 JD(1) and/or differences in grain sizes.Peer reviewe

    Physical Characterization of 2015 JD(1) : A Possibly Inhomogeneous Near-Earth Asteroid

    Get PDF
    The surfaces of airless bodies such as asteroids are exposed to many phenomena that can alter their physical properties. Bennu, the target of the OSIRIS-REx mission, has demonstrated how complex the surface of a small body can be. In 2019 November, the potentially hazardous asteroid 2015 JD(1) experienced a close approach of 0.033 1 au from the Earth. We present results of the physical characterization of 2015 JD(1) based on ground-based radar, spectroscopy, and photometric observations acquired during 2019 November. Radar polarimetry measurements from the Arecibo Observatory indicate a morphologically complex surface. The delay-Doppler images reveal a contact binary asteroid with an estimated visible extent of similar to 150 m. Our observations suggest that 2015 JD(1) is an E-type asteroid with a surface composition similar to aubrites, a class of differentiated enstatite meteorites. The dynamical properties of 2015 JD(1) suggest that it came from the nu (6) resonance with Jupiter, and spectral comparison with major E-type bodies suggests that it may have been derived from a parental body similar to the progenitor of the E-type (64) Angelina. Significantly, we find rotational spectral variation across the surface of 2015 JD(1) from the red to blue spectral slope. Our compositional analysis suggests that the spectral slope variation could be due to the lack of iron and sulfides in one area of the surface of 2015 JD(1) and/or differences in grain sizes.Peer reviewe

    The Large Aperture GRB Observatory

    Full text link
    The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the high energy (around 100 GeV) component of Gamma Ray Bursts, using the single particle technique in arrays of Water Cherenkov Detectors (WCD) in high mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela, 4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range. The status of the Observatory and data collected from 2007 to date will be presented.Comment: 4 pages, proceeding of 31st ICRC 200

    Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory

    Full text link
    In order to characterise the behaviour of Water Cherenkov Detectors (WCD) under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray Burst (GRB), simulations were conducted and compared to data acquired by the WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of WCD at high altitude to detect GRBs using the single particle technique. The LAGO sensitivity to GRBs is derived from the reported simulations of the gamma initiated particle showers in the atmosphere and the WCD response to secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200
    corecore