54,605 research outputs found

    Boron determination in steels by Inductively-Coupled Plasma spectometry (ICP)

    Get PDF
    The sample is treated with 5N H2SO4 followed by concentrated HNO3 and the diluted mixture is filtered. Soluble B is determined in the filtrate by Inductively-Coupled Plasma (ICP) spectrometry after addition HCl and extraction of Fe with ethyl-ether. The residue is fused with Na2CO3 and, after treatment with HCl, the insoluble B is determined by ICP spectrometry as before. The method permits determination of ppm amounts of B in steel

    New Precision Electroweak Tests of SU(5) x U(1) Supergravity

    Full text link
    We explore the one-loop electroweak radiative corrections in SU(5)×U(1)SU(5)\times U(1) supergravity via explicit calculation of vacuum-polarization and vertex-correction contributions to the ϵ1\epsilon_1 and ϵb\epsilon_b parameters. Experimentally, these parameters are obtained from a global fit to the set of observables Γl,Γb,AFBl\Gamma_{l}, \Gamma_{b}, A^{l}_{FB}, and MW/MZM_W/M_Z. We include q2q^2-dependent effects, which induce a large systematic negative shift on ϵ1\epsilon_{1} for light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). The (non-oblique) supersymmetric vertex corrections to \Zbb, which define the ϵb\epsilon_b parameter, show a significant positive shift for light chargino masses, which for tanβ2\tan\beta\approx2 can be nearly compensated by a negative shift from the charged Higgs contribution. We conclude that at the 90\%CL, for m_t\lsim160\GeV the present experimental values of ϵ1\epsilon_1 and ϵb\epsilon_b do not constrain in any way SU(5)×U(1)SU(5)\times U(1) supergravity in both no-scale and dilaton scenarios. On the other hand, for m_t\gsim160\GeV the constraints on the parameter space become increasingly stricter. We demonstrate this trend with a study of the m_t=170\GeV case, where only a small region of parameter space, with \tan\beta\gsim4, remains allowed and corresponds to light chargino masses (m_{\chi^\pm_1}\lsim70\GeV). Thus SU(5)×U(1)SU(5)\times U(1) supergravity combined with high-precision LEP data would suggest the presence of light charginos if the top quark is not detected at the Tevatron.Comment: LaTeX, 11 Pages+4 Figures(not included), the figures available upon request as an uuencoded file(0.4MB) or 4 PS files from [email protected], CERN-TH.7078/93, CTP-TAMU-68/93, ACT-24/9

    Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud

    Get PDF
    We report attempted validation of Ozone Monitoring Instrument (OMI) sulfur dioxide (SO<sub>2</sub>) retrievals in the stratospheric volcanic cloud from Sarychev Peak (Kurile Islands) in June 2009, through opportunistic deployment of a ground-based ultraviolet (UV) spectrometer (FLYSPEC) as the volcanic cloud drifted over central Alaska. The volcanic cloud altitude (~12–14 km) was constrained using coincident CALIPSO lidar observations. By invoking some assumptions about the spatial distribution of SO<sub>2</sub>, we derive averages of FLYSPEC vertical SO<sub>2</sub> columns for comparison with OMI SO<sub>2</sub> measurements. Despite limited data, we find minimum OMI-FLYSPEC differences within measurement uncertainties, which support the validity of the operational OMI SO<sub>2</sub> algorithm. However, our analysis also highlights the challenges involved in comparing datasets representing markedly different spatial and temporal scales. This effort represents the first attempt to validate SO<sub>2</sub> in a stratospheric volcanic cloud using a mobile ground-based instrument, and demonstrates the need for a network of rapidly deployable instruments for validation of space-based volcanic SO<sub>2</sub> measurements

    SUSY signals at HERA in the no-scale flipped SU(5) supergravity model

    Full text link
    Sparticle production and detection at HERA are studied within the recently proposed no-scale flipped SU(5)SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: epe~L,Rχi0+X,ν~eχ1+Xe^-p\to \tilde e^-_{L,R}\chi^0_i+X, \tilde \nu_e\chi^-_1+X, where χi0(i=1,2)\chi^0_i(i=1,2) are the two lightest neutralinos and χ1\chi^-_1 is the lightest chargino. We study the elastic and deep-inelastic contributions to the cross sections using the Weizs\"acker-Williams approximation. We find that the most promising supersymmetric production channel is right-handed selectron (e~R\tilde e_{R}) plus first neutralino (χ10\chi^0_1), with one hard electron and missing energy signature. The ν~eχ1\tilde\nu_e\chi^-_1 channel leads to comparable rates but also allows jet final states. A right-handedly polarized electron beam at HERA would shut off the latter channel and allow preferentially the former one. With an integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI lower bounds on me~R,mν~e,mχ10m_{\tilde e_R}, m_{\tilde\nu_e},m_{\chi^0_1} by \approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an excellent supersymmetry detector which can provide indirect information about the sparticle masses by measuring the leading proton longitudinal momentum distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1

    New Precision Electroweak Tests in Supergravity Models

    Get PDF
    We update the analysis of the precision electroweak tests in terms of 4 epsilon parameters, ϵ1,2,3,b\epsilon_{1,2,3,b}, to obtain more accurate experimental values of them by taking into account the new LEP data released at the 28th ICHEP (1996, Poland). We also compute ϵ1\epsilon_1 and ϵb\epsilon_b in the context of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model to obtain the updated constraints by imposing the correlated constraints in terms of the experimental ellipses in the ϵ1ϵb\epsilon_1-\epsilon_b plane and also by imposing the new bound on the lightest chargino mass, mχ1±79m_{\chi^\pm_1}\gtrsim 79 GeV GeV. Upon imposing these new experimental results, we find that the situations in the no-scale model are much more favorable than those in the standard model, and if mt170m_t\gtrsim 170 GeV GeV, then the allowed regions at the 95% C.~L. in the no-scale model are tanβ4\tan\beta\gtrsim 4 and mχ1±120(82)m_{\chi^\pm_1}\lesssim 120 (82) GeV GeV for μ>0(μ<0)\mu>0 (\mu<0), which are in fact much more stringent than in our previous analysis. Therefore, assuming that mt170m_t\gtrsim 170 GeV GeV, if the lightest chargino mass bound were to be pushed up only by a few GeV, the sign on the Higgs mixing term μ\mu in the no-scale model could well be determined from the ϵ1ϵb\epsilon_1-\epsilon_b constraint to be positive at the 95% C.~L. At any rate, better accuracy in the measured mtm_t from the Tevatron in the near future combined with the LEP data is most likely to provide a decisive test of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model.Comment: 15 pages, REVTEX, 1 figure (not included but available as a ps file from [email protected]
    corecore