25 research outputs found

    Effect of Precipitation on Cryogenic Toughness of N-Containing Austenitic Stainless Steels After Aging

    Get PDF
    This chapter shows the effect of intergranular precipitation on the cryogenic toughness of N-containing austenitic stainless steels in comparison to that for 316-type austenitic stainless steels. First part of the chapter deals with the thermodynamic stability and growth kinetics of the precipitated phases in the austenite matrix based on Thermo-Calc software. To continue, the experimental evolution of precipitation for N-containing steels is compared to that of 316-type steel and the difference between them are explained based on the Thermo-Calc PRISMA-calculated results. Finally, the effect of intergranular precipitation on the cryogenic fracture toughness is also analyzed using Charpy V‐Notch impact test results. The fracture mode is also related to the precipitation characteristics

    Application of Phase-Field Method to the Analysis of Phase Decomposition of Alloys

    Get PDF
    This chapter is focused on the application of the phase-field method to the analysis of phase decomposition during the isothermal aging of alloys. The phase-field method is based on a numerical solution of either the nonlinear Cahn-Hilliard equation or the Cahn-Allen equation. These partial differential equations can be solved using the finite difference method among other numerical methods. The phase-field method has been applied to analyze different types of phase transformations in alloys, such as phase decomposition, precipitation, recrystallization, grain growth, solidification of pure metals and alloys, martensitic transformation, ordering reactions, and so on. One of the main advantages of phase-field method is that this method permits to follow the microstructure evolution in two or three dimensions as the time of phase transformations progresses. Thus, the morphology, size, and size distribution could be determined to follow their corresponding growth kinetics. Additionally, the evolution of chemical composition can also be followed during the phase transformations. Furthermore, both Allen-Cahn and Cahn-Hilliard equations can be solved simultaneously to analyze the presence of ordered phases or magnetic domains in alloys

    Precipitation Process in Fe-Ni-Al-based Alloys

    Get PDF
    This chapter covers first the precipitation and coarsening processes in Fe-Ni-Al alloys aged artificially at high temperatures, as well as their effect on the mechanical properties. These results show the precipitation evolution, morphology of precipitates, coarsening kinetics and mechanical properties such as hardness. Additionally, the effect of alloying elements such as copper and chromium is also studied on the precipitation and coarsening processes. The main results of this section are concerning on the coarsening kinetics and its effect on hardness. Besides, the diffusion couple method is employed to study the precipitation and coarsening process in different Fe-Ni-Al alloy compositions, as well as its effect on the hardness. All the above aspects of precipitation and coarsening are also supported with Thermo-Calc calculations

    Simulación numérica de la evolución microestructural en aleaciones cu-ni-fe envejecidas isotermicamente

    Get PDF
    Se realizó la simulación numérica de la evolución microestructural en aleaciones Cu-Ni-Fe, Cu-48%at.Ni-8%at.Fe y Cu-46%at.Ni-4%at.Fe envejecidas a 673, 723 y 773 K por diferentes tiempos. Se siguió la evolución microestructural utilizando MICE, MET y DRX para las aleaciones Cu-48%at.Ni-8%at.Fe y Cu- 46%at.Ni-4%at.Fe envejecidas a las mismas condiciones. Los resultados de simulación numérica mostraron una buena concordancia con los experimentales. La descomposición de fases ocurre en forma espinodal produciendo dos fases: rica en Cu-Ni y rica en Ni-Fe. La morfología y composición de las fasescoinciden con las observadas experimentalmente y/o reportadas en la literatur

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≀0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level
    corecore