47 research outputs found

    Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf

    Get PDF
    Dynamic cell identities underlie flexible developmental programs. The stomatal lineage in the Arabidopsis leaf epidermis features asynchronous and indeterminate divisions that can be modulated by environmental cues. The products of the lineage, stomatal guard cells and pavement cells, regulate plant-atmosphere exchanges, and the epidermis as a whole influences overall leaf growth. How flexibility is encoded in development of the stomatal lineage and how cell fates are coordinated in the leaf are open questions. Here, by leveraging single-cell transcriptomics and molecular genetics, we uncovered models of cell differentiation within Arabidopsis leaf tissue. Profiles across leaf tissues identified points of regulatory congruence. In the stomatal lineage, single-cell resolution resolved underlying cell heterogeneity within early stages and provided a fine-grained profile of guard cell differentiation. Through integration of genome-scale datasets and spatiotemporally precise functional manipulations, we also identified an extended role for the transcriptional regulator SPEECHLESS in reinforcing cell fate commitment.Peer reviewe

    Neuregulin 1 type III reduces severity in a mouse model of Congenital Hypomyelinating Neuropathy

    Get PDF
    Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 type III regulate Schwann cell fate and myelination. Here we ask if modulating neuregulin 1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we rescued the myelination defects by early overexpression of neuregulin 1 type III. Surprisingly, the rescue was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 (Pmp2) and oligodendrocyte myelin glycoprotein (Omg). We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial neuregulin 1 type III signaling has beneficial effects and restores myelination defects during development in a model of CHN

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Niraparib in patients with metastatic castration-resistant prostate cancer and DNA repair gene defects (GALAHAD): a multicentre, open-label, phase 2 trial

    Get PDF
    Background Metastatic castration-resistant prostate cancers are enriched for DNA repair gene defects (DRDs) that can be susceptible to synthetic lethality through inhibition of PARP proteins. We evaluated the anti-tumour activity and safety of the PARP inhibitor niraparib in patients with metastatic castration-resistant prostate cancers and DRDs who progressed on previous treatment with an androgen signalling inhibitor and a taxane. Methods In this multicentre, open-label, single-arm, phase 2 study, patients aged at least 18 years with histologically confirmed metastatic castration-resistant prostate cancer (mixed histology accepted, with the exception of the small cell pure phenotype) and DRDs (assessed in blood, tumour tissue, or saliva), with progression on a previous next-generation androgen signalling inhibitor and a taxane per Response Evaluation Criteria in Solid Tumors 1.1 or Prostate Cancer Working Group 3 criteria and an Eastern Cooperative Oncology Group performance status of 0–2, were eligible. Enrolled patients received niraparib 300 mg orally once daily until treatment discontinuation, death, or study termination. For the final study analysis, all patients who received at least one dose of study drug were included in the safety analysis population; patients with germline pathogenic or somatic biallelic pathogenic alterations in BRCA1 or BRCA2 (BRCA cohort) or biallelic alterations in other prespecified DRDs (non-BRCA cohort) were included in the efficacy analysis population. The primary endpoint was objective response rate in patients with BRCA alterations and measurable disease (measurable BRCA cohort). This study is registered with ClinicalTrials.gov, NCT02854436. Findings Between Sept 28, 2016, and June 26, 2020, 289 patients were enrolled, of whom 182 (63%) had received three or more systemic therapies for prostate cancer. 223 (77%) of 289 patients were included in the overall efficacy analysis population, which included BRCA (n=142) and non-BRCA (n=81) cohorts. At final analysis, with a median follow-up of 10·0 months (IQR 6·6–13·3), the objective response rate in the measurable BRCA cohort (n=76) was 34·2% (95% CI 23·7–46·0). In the safety analysis population, the most common treatment-emergent adverse events of any grade were nausea (169 [58%] of 289), anaemia (156 [54%]), and vomiting (111 [38%]); the most common grade 3 or worse events were haematological (anaemia in 95 [33%] of 289; thrombocytopenia in 47 [16%]; and neutropenia in 28 [10%]). Of 134 (46%) of 289 patients with at least one serious treatment-emergent adverse event, the most common were also haematological (thrombocytopenia in 17 [6%] and anaemia in 13 [4%]). Two adverse events with fatal outcome (one patient with urosepsis in the BRCA cohort and one patient with sepsis in the non-BRCA cohort) were deemed possibly related to niraparib treatment. Interpretation Niraparib is tolerable and shows anti-tumour activity in heavily pretreated patients with metastatic castration-resistant prostate cancer and DRDs, particularly in those with BRCA alterations

    Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing

    Get PDF
    AbstractA three-dimensional progressive damage model has been developed to capture the onset and initial propagation of damage within a three-dimensional woven composite in a single-bolt, double-shear joint. Reinforced with a three-dimensional woven ply to ply interlock IM7 carbon fiber preform impregnated with toughened epoxy resin and manufactured using a resin transfer molding process, the composite represents a unique material currently used in select aerospace structures. The modeled joint is commonly found in many aerospace structures and, when combined with the progressive damage response of this three-dimensional woven composite, the material response can be reliably predicted with a three-dimensional non-linear finite element model. This model is constructed using an orthotropic material assumption far from the bearing area and a voxelized mesoscale model with an as-molded geometry representing matrix and impregnated tow phases. The well-established Hashin failure criteria and the Matzenmiller–Lubliner–Taylor damage model were implemented with the unique morphology of three-dimensional woven composites. The onset of damage and trends seen in the model were found to be in agreement with previous experimental findings
    corecore