15,404 research outputs found

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation

    Get PDF
    An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals

    Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems

    Get PDF
    The present paper investigates the feasibility of using H2/CH4 fuel blends in micromix-type burners applied to industrial combustion systems. The micromix burner concept, characterised by the formation of miniaturised and compact turbulent diffusion flames, was developed for gas turbine hydrogen burners showing low NOx emissions (below 10 ppm) without flashback risk, which represent the main issues when using pure hydrogen or hydrogen enriched natural gas blends as fuel, making it a promising concept to be applied in industrial burners. The study was carried out through numerical CFD simulations, accounting for detailed chemistry calculations of turbulent micromix flames and previously validated through experimental measurements in a laboratory-scale micromix burner prototype. The resulting flow, temperature and exhaust emission characteristics for three H2/CH4 fuel blends with H2 content of 90, 75 and 60% respectively were analysed and discussed for air–fuel equivalence ratios at λ=1.8 and 1.6 (lower than the well-characterised air–fuel equivalence ratios in micromix gas turbine burners at λ=2.5 and closer to current industrial burners), considering an energy density of 14 MW/m2 bar. Numerical results showed low fuel flexibility for industrial-scale micromix burners, with still low NOx emissions (12–85 ppm) but relatively high CO emissions (448–4970 ppm) for the considered blends and λ values. The lowest CO emissions were given together with jet penetration phenomena, ruling out the feasibility of these design points due to the greater importance of the latter phenomenon.Provincial Council of Bizkaia within the Technology Transfer Programme 2021,co-financed by EGEF, Basque Governmen

    Dynamics and rheology of a suspension of super-paramagnetic chains under the combined effect of a shear flow and a rotating magnetic field

    Get PDF
    This study presents an analysis of the dynamics of a single and multiple chains of spherical super-paramagnetic beads suspended in a Newtonian fluid under the combined effect of an external rotating magnetic field and a shear flow. Viscosity results depend on two main non-dimensional numbers: the ratio between the shear rate and the magnetic rotation frequency and the ratio between the hydrodynamic and magnetostatic interactions (the Mason number). When the shear rate is smaller than the magnetic frequency, the chain rotation accelerates the surrounding fluid, reducing the value of the measured suspension viscosity even below the solvent one. In this regime, shear-thickening is observed. For values of the shear rates comparable to the rotation magnetic frequency, the viscosity reaches a maximum and non-linear coupling effects come up. If the shear rate is increased to values above the rotation frequency, the viscosity decreases and a mild shear-thinning is observed. In terms of the Mason number, the suspension viscosity reduces in line with literature results reported for fixed magnetic fields, whereas the shear-rate/magnetic-frequency ratio parameters induces a shift of the viscosity curve towards larger values. Results at larger concentrations and multiple chains amplify the observed effects
    • …
    corecore