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This study presents an analysis of the dynamics of a single and multiple chains

of spherical super-paramagnetic beads suspended in a Newtonian fluid under the

combined effect of an external rotating magnetic field and a shear flow. Viscosity

results depend on two main non-dimensional numbers: the ratio between the shear

rate and the magnetic rotation frequency and the ratio between the hydrodynamic

and magnetostatic interactions (the Mason number). When the shear rate is smaller

than the magnetic frequency, the chain rotation accelerates the surrounding fluid,

reducing the value of the measured suspension viscosity even below the solvent one.

In this regime, shear-thickening is observed. For values of the shear rates comparable

to the rotation magnetic frequency, the viscosity reaches a maximum and non-linear

coupling effects come up. If the shear rate is increased to values above the rotation

frequency, the viscosity decreases and a mild shear-thinning is observed. In terms

of the Mason number, the suspension viscosity reduces in line with literature results

reported for fixed magnetic fields, whereas the shear-rate/magnetic-frequency ratio

parameters induces a shift of the viscosity curve towards larger values. Results at

larger concentrations and multiple chains amplify the observed effects.
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I. INTRODUCTION

Complex fluids have been very promising in the last decades for their unique and versatile

properties: polymer solutions, suspensions, active matter, etc1. Among complex fluids,

suspensions with magnetically-active particles have developed an outstanding performance

for their capability to tune their rheological properties upon the application of an external

magnetic field.2

When a magnetic field is applied, magnetic particles in a suspension magnetise and form

chain-like structures along the direction of the magnetic field. The morphology of these

aggregates and the kinetics of aggregation are controlled by the magnetic field strength and

the particle concentration.3,4 Usually, these aggregates are not in thermodynamic equilibrium

as the structure is kinetically trapped in metastable states.5 Also, these chain-like aggregates

typically gap-span. The structure formation of these gap-spanning aggregates has been

studied in simulations6–9 and it has also been observed experimentally with microscopic10–12

and X-ray techniques.13.

The flow properties of these suspensions change dramatically, leading to viscosity in-

crease, and it is possible to tune their rheology simply by changing the magnetic field. If

the suspension is subjected to a flow, the chain-like aggregates deform and can eventually

break.2,14 The use of magnetically-active materials with the appropriate rheological, physical

or chemical properties has been extremely demanded by different industries from vibration

control15,16 to biomedical applications.17

From a dimensional analysis, it is possible to obtain non-dimensional numbers control-

ling the rheology of suspensions with magnetic particles. Generally speaking, the bulk

rheological properties of suspensions of super-paramagnetic particles can be simplified by

thermal energy, magnetic and hydrodynamic interactions, neglecting inertia.18 The so-called

lambda ratio is defined as the ratio between the magnetic energy and the thermal energy:

λ = Um/kBT where Um is the magnetic energy between the paramagnetic particles strongly

depending on the particle size, kB is the Boltzmann constant and T is the temperature of

the system. When the particle diameter is small and the thermal fluctuations are important

(i.e. for ferrofluids), the viscosity increases mildly in the so-called magneto-viscous effect.19,20

However, if the particle diameter and the magnetic field strength are large enough, and, thus,

the lambda ratio is very high, λ � 1, thermal fluctuations can be neglected, the viscosity
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increases dramatically and the suspension might show a yield stress. Those suspensions are

named magneto-rheological (MR) fluids.2,21 In this paper, we address the non-colloidal limit,

neglecting the thermal interactions.

In the presence of flow, another dimensionless number can be defined as the ratio be-

tween the hydrodynamic and the magnetic forces: the Mason number, Mn = Fhyd/F0,
18,22

where Fhyd is the hydrodynamic force and F0 is the magnetic force. Conventionally, it

has been defined considering single particle Stokes’ drag for the hydrodynamic contribu-

tion, Fhyd = 6πη0a
2γ̇ and the dipolar magnetic force between two particles F0 = 3µ0

4π

m2
0

a4
,

Mn = 6πη0a
2γ̇/F0. Here, η0 is the solvent viscosity, γ̇ is the shear rate (or the generalised

flow rate in the case of non-shearing flows), µ0 is the vacuum magnetic permeability, m0 is

the magnetic dipole of one particle and a is the particle radius.

In a simple shear experiment, when the particle concentration φ and the magnetic field

strength H0 are high enough, the suspension shows a yield stress behaviour and the vis-

cosity diminishes as a function of the shear rate due to the deformation and breakup of

the magnetic-particle chains that had been formed.2 Also if the magnetic field strength in-

creases, the viscosity increases.23 In spite of this rich rheological response, if we represent

the viscosity as a function of the Mason number, all curves at different magnetic fields col-

lapse on a master curve.22,24 Mason number usually considers dipolar magnetic interactions

for dilute systems and in the linear magnetic regime, but some corrections with the mean

magnetization approximation can be included for higher concentrations and near magnetic

field saturation.18. It is important to note that, as it is possible to obtain a master curve

as a function of the Mason number, and the Mason number only includes the dipolar in-

teractions, multipolar interactions between particles can generally be neglected to provide

a simple but effective model of the system.

The yield stress, and the transition from the magnetic-dominated regime to the hydrodynamic-

dominated regime is thus only a function of the particle concentration.2,24. Micromechanical

models have been proposed [e.g. Martin and Anderson (1996)25, Volkova et al. (2000)26]

for dilute systems reporting a linear dependence on the concentration as the interaction be-

tween different chains is negligible. All these micromechanical models have been successfully

used in the description of experimental studies for dilute suspensions. Thus, it is possible to

model dilute MR fluids by only knowing the dynamics of a single chain and then extrapolate

the results for a multiple-chain system.
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When applying a rotating magnetic field, magnetic-active fluids exhibit very interesting

structural properties. When the field-rotation frequency is slow enough, the magnetic chains

rotate along the field direction. However, when the frequency increases, the chain rotation

is not longer syncronised with the field rotation and eventually chain breakup occurs.27–29

Also, it has been experimentally shown that, if the frequency of the rotating field is very

high, chains show a ’jerky’ motion and move forward and backward and then break [i.e.

see Fig. 1 in Helgesen et al. (1990)30]. The critical breakup frequency has been obtained

experimentally28 and also predicted theoretically depending on the number of particles in the

chain, ωc ∼ 1/N2 , or ω ∼ log(N)/N2.28,31,32 Furthermore, simulations using lubrication and

the Smoothed Particle Hydrodynamic (SPH) method have been used to study the structure

and dynamics of magnetic beads in a rotating field, showing results in good agreement with

theoretical models with high-order lubrication corrections included.29

Mason number has also been defined in the case of rotation, Mnr = 192πηωa2/F0
33.

Thus, as the rotational Mason number is proportional to the rotation frequency, the maxi-

mum number of particles that can be in a chain at a fixed Mason number would be related

with the Mason number as Nmax ∼ Mnr
−2.27,33 This result is similar to theoretical results

in micromechanical models for steady shear [see Eq. 9 in Martin and Anderson (1996)25]. It

is important to note that, for a fixed concentration φ, when a shear rate is superimposed to

a rotating magnetic field, there are only two independent dimensionless numbers governing

the system: the ratio between the shear rate and the rotation frequency of the magnetic

field, γ̇/ωH and the Mason number. The rotational Mason number can be obtained as a

function of the other two, Mnr = 32
(
ωH
γ̇

)
Mn.

Moreover, the application of a rotating magnetic field has been reported to be impor-

tant for several applications in literature such as magnetophoresis, providing an enhanced

response in the presence of rotation.34

In a previous work29 the case of a rotating field without shear was studied. Here, we aim

at studying the rheological properties of a dilute suspension of paramagnetic particles under

the combined effect of a shear flow and an externally imposed rotating magnetic field. In

this paper, the dynamic and the rheological properties of this system are addressed using

numerical simulations, considering short-range lubrication forces and the SPH method to

model the many-body long-range hydrodynamic interactions. It is important to note that

the explicit solvent and hydrodynamic interactions have scarcely been studied in the pre-
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vious literature for MR fluids. In a recent paper35, the authors have studied the rheology

of MR fluids performing simulations using SPH. Results differed from typical Stokes’ drag

simulations in the total hydrodynamic stress computed (the Stokes’ drag simulations overes-

timated it) but not in the prediction of the shear-thinning transition. When applying a shear

rate in a magnetic suspension with a rotating field; the structural, dynamic and rheological

properties of the system will depend in a complex way on their interplay and this effect will

be investigated in detail in this paper.

This article is structured as follows: the SPH model is introduced in Sec. II where the

short-range lubrication forces between rigid beads are also discussed. Interparticle magnetic

forces are presented in Sec. III. The numerical parameters and the results are shown in

Sec. IV and finally conclusions are reported in Sec. V.

II. SPH MODEL

In this section the SPH method used to run the simulations will be presented. The

method description will be divided in different subsections, as follow: in Sec. II A details of

the solvent medium will be given, in Sec. II B the suspended solid particles will be described

and in Sec. II C the lubrication interactions will be discussed.

A. Suspending Newtonian fluid

The SPH method is a meshless Lagrangian model, in which the Navier-Stokes equations

describing a Newtonian fluid are discretized by a set of points called fluid particles. Positions

and momenta of every fluid particle evolve according to the following equations:36

ṙi = vi

mv̇i = −
∑
j

[
Pi
d2i

+
Pj
d2j

]
∂W (rij)

∂rij
eij + (1)

+
∑
j

(D + 2)η0

[
1

d2i
+

1

d2j

]
∂W (rij)

∂rij

eij · vij
rij

eij

where m is the fluid particle mass, i = 1, .., NSPH is the fluid particle index, D is the number

of dimensions of the system, Pi the pressure of particle i, eij = rij/rij the unit vector

5



joining particles i and j and vij = vi − vj their velocity difference. di =
∑

jW (rij, rcut) is

the number density of particle i estimated as a weighted interpolation with kernel function

W with compact support rcut
37. η0 is the fluid viscosity. Using this definition, continuity

equation for the mass density ρi = mdi is automatically satisfied. The Newton’s equations

of motion Eq. (1) are a discrete representation of the momentum Navier-Stokes equation in

a Lagrangian framework: the first summation in Eq. (1) is the pressure gradient term and

the second the Laplacian of the velocity field. A quintic spline kernel38 with cutoff radius

rcut = 3 ∆r, where ∆r is the mean fluid particle separation, is used for the the weighting

function W 39.

The following equation of state is used:

Pi = p0

[(
ρi
ρref

)γ
− 1

]
(2)

where ρref = 0.99ρ0 ensures a positive pressure and the input parameters ρ0, p0 and γ are

chosen to have a speed of sound cs =
√
γp0/ρ0 larger than any other velocity present in the

problem to enforce approximate incompressibility40.

B. Solid particles: fluid-structure interaction

Solid bodies of arbitrary shape can be modelled using boundary particles similar to

fluid ones.41 Boundary particles, located inside the solid region, interact with fluid particles

through the SPH forces described in Eq. (1). The presence of a solid body within the flow

field requires the enforcement of the no-slip boundary conditions at the liquid-solid interface:

during each time step an artificial velocity is assigned to the boundary particles satisfying

zero interpolation at the interface.38 The same approach is also used to model any arbitrary

external wall.

The total SPH force F sph
α and torque T sph

α acting on solid particle α can then be evaluated

in the following way

F sph
α =

∑
j∈α

F j, T sph
α =

∑
j∈α

(rj −Rα)× F j (3)

where F j is the force and rj the position of the boundary particle j and Rα is the center of

mass of the solid particle α. Solid particle’s position, linear velocity V α and angular velocity
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Ωα can be therefore obtained by integration of Eq. (3). Boundary particles positions are

then updated using V α and Ωα and assuming a rigid body motion42. In the following we

assume that α = 1, .., N , where N is the total number of solid beads suspended in the liquid.

C. Interparticle lubrication/repulsion

The present SPH scheme accurately evaluates the long-range hydrodynamic interactions

(HIs) between solid particles.41 However, as discussed in detail in literature,42–44 when two

solid particles (e.g. α and β) get very close to each other, the SPH model does not longer

reproduce the HIs between them and, as a consequence, the short-range forces acting on the

solid particles need to be corrected. In previous works42–44 an analytical solution has been

obtained in the limit of small sphere’s separation, and the corresponding pairwise short-

range HIs has been considered and superimposed to the far-field multi-body SPH HIs. The

normal and tangential lubrication forces acting between couples of spheres read:45

F lub,n
αβ (s) = fαβ(s)V αβ · eαβeαβ

(4)

F lub,t
αβ (s) = gαβ(s)V αβ · (1− eαβeαβ)

where eαβ = Rαβ/Rαβ is the unit vector joining the centers of mass of solid particles α

and β, Rαβ = Rα − Rβ, Rαβ = |Rαβ| its magnitude; V αβ is their relative velocity and

s = Rαβ − (aα + aβ) is the distance between spheres surfaces. The scalar functions fαβ(s)

and gαβ(s) are defined as

fαβ(s) = −6πη

( aαaβ
aα + aβ

)2
1

s
+ aα

1 + 7
aβ
aα

+
(
aβ
aα

)2
5
(

1 +
aβ
aα

)3
 ln

(aα
s

)
(5)

gαβ(s) = −6πηaα

4
aβ
aα

(
2 +

aβ
aα

+ 2
(
aβ
aα

)2)
15
(

1 +
aβ
aα

)3
 ln

(aα
s

)

where aα and aβ are the sphere’s radii (in this paper, we consider all particles have the same

radius, aα = aβ = a). As discussed in previous works,42–44 excellent agreement is obtained

in the HIs description over the entire range of interparticle distances s. An accurate and
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efficient semi-implicit time integration splitting scheme46 for the short-range lubrication

forces is used to stabilize and speed up the simulations.43

Finally, an additional short-range repulsive force is introduced to prevent particles over-

lap. This force mimic, for example, particle’s surface roughness or other short-range inter-

actions as the electrostatic one. The expression used for this force is the following.47,48

F rep
αβ = F rep τe−τs

1− e−τs
eαβ (6)

where τ−1 determines the interaction range and F rep its magnitude. In this work τ−1 =

0.001a and F rep = 0.02115 is adopted, corresponding to a nearly hard-sphere model.

III. CHAIN DYNAMICS UNDER A ROTATING MAGNETIC FIELD:

MATHEMATICAL MODEL

A spatially homogeneous rotating magnetic field of the form H = H0(cos(ωHt), 0, sin(ωHt))

is considered and the rotation takes place on the plane (x, z) with angular frequency ωH .

The most relevant forces involved in the chain rotation and shape are the magnetic torque of

the two particles at both ends of the chain, and the drag force. The effect of the tangential

lubrication force between beads, which becomes particularly relevant for short chains, is

also considered.

When the suspended solid beads are super-paramagnetic, the presence of an external

magnetic field H will induce a magnetic dipole moment. The alignment of the magnetic

moment mα of a given solid bead α with the external magnetic field is fast enough that it

can be considered as instantaneous, in such a way that:

mα =
Vcχ

µ0

Hα (7)

where Vc = 4πa3f/3 is the volume of a paramagnetic bead of radius a, with f being the

fraction of the bead’s volume that is paramagnetic and Hα the magnetic field estimated at

the beads position Rα. χ is the magnetic susceptibility difference between the bead and the

suspending fluid, whereas µ0 is the vacuum magnetic permittivity. Eq. (7) is valid under the

assumption that the external field H is not too large, in such a way that a linear regime is

preserved.
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As a result, the induced dipole-dipole magnetic force between two beads α and β can be

expressed as49

FB
αβ =

3µ0

4πR4
αβ

[(mα · eαβ)mβ + (mβ · eαβ)mα−

(5 (mβ · eαβ) (mα · eαβ)− (mα ·mβ)) eαβ] (8)

In the case of identical solid particles and homogeneous magnetic field H , each bead will

have the same magnetic moment mα = mβ = m and Eq. (8) becomes:

FB
αβ =

3µ0

4πR4
αβ

[
2 (m · eαβ)m−

(
5 (m · eαβ)2 −m2

0

)
eαβ
]

(9)

Eq. (9) can be re-written in the following way:

FB
αβ =

F0

R
4

αβ

[
2 (m · eαβ)m−

(
5 (m · eαβ)2 − 1

)
eαβ
]

(10)

where m = m/m0 and Rαβ = Rαβ/a, F0 = 3µ0
4π

m2
0

a4
= 4π

3µ0
(afχH0)

2 and m0 = Vcχ
µ0
H0.

IV. NUMERICAL RESULTS

A. Numerical setup

A chain of seven paramagnetic spherical beads of radius a is suspended in a Newtonian

fluid undergoing a shear flow in the xz plane, as shown in Fig. 1. In order to impose a

uniform shear flow γ̇, two rigid plates are considered in the planes normal to the z−direction,

moving in opposite directions along the x-axis. The chain center bead is placed at the center

of the computational domain, a cubic box of side L = 25a. This condition corresponds to

an ultra-dilute suspension. Box size was always chosen so that the distance between the

chain and the top and bottom walls in the z-direction is always larger than one particle

radius to avoid wall effects. However, it is important to note that in typical simulations for

magnetorheology and in experiments, chains do usually span along the whole gap between

walls [e.g. Kittipoomwong et al. (1005), Liu et al. (2010), Peng et al. (2020), Zhang et al.

(2020)].6–9. This fact is also found in experiments with fixed magnetic fields and percolating

structures has been seen by microscopy and X-ray techniques [e.g. Kor et al. (2020),

Schumann et al. (2019)].11,13 In order to compare with magnetorheological experiments and

simulations with fixed magnetic fields, we kept a moderate separation between the top and
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bottom parts of the chain and the walls, but the separation between the chain and the wall

was always larger than a particle radius a to ensure a full resolution of the SPH model.

For all the simulations presented in this work the SPH resolution used is ∆r/a = 0.3

where ∆r is the mean particle spacing. The total number of SPH particles in this case

is N = 466893. Note that the number of particles was chosen based on the validation

made in our previous work29. The fluid viscosity and density are respectively η0 = 0.5

and ρf = 1.0. The magnetic field is rotating in the same plane of shear xz and same

direction. In order to avoid the break-up of the chain, the maximum angular frequency

for the magnetic field was ωH = 0.4ωc, where ωc is the critical angular frequency for chain

break-up in absence of shear flow.29 With this choice of ωH the chain rotates as a nearly-rigid

body under zero-flow conditions29. The imposed shear rates here vary between γ̇/ωH = 0.16

and γ̇/ωH = 3.6. The range of shear rates has been chosen in order to ensure a Reynolds

number Re = l2γ̇ρf/η0 << 1, where l = 14a is the chain’s length, and to minimize inertial

effects. The Re numbers ranges from Re = 2.24 · 10−3 when γ̇/ωH = 0.16 to Re = 0.5 when

γ̇/ωH = 3.6.

Periodic boundary conditions has been set in the x and y direction but not in the z-

direction. This setup has been used extensively in magnetorheology [e.g. Klingenberg et

al. (1989)50, Mohebi et al. (1996)51, Ly et al. (1999)52, Heine et al. (2006)53, Kor and

See (2010)11]. One of the reasons for this choice is that periodic boundary conditions in

the z-direction would lead to an infinite set of replicas in the z-direction, which would

model magnetized walls instead of the experimental situation where non-magnetic plates are

often used. Moreover, wall-based approaches to impose a shear flow have been rheologically

validated in our previous works42–44 .

B. Rheology and dynamics: effect of γ̇/ωH

The simulation results are displayed in Fig. 2 which shows the suspension viscosity η as

a function of different applied shear rates γ̇ by keeping the frequency ωH of the rotating

external magnetic field H constant, ωH = 0.4ωc. We are in the case where the frequency is

much lower than the critical break-up frequency as reported in a previous work29. At these

frequencies, the chain always follows the direction of the external magnetic field. The overall

suspension viscosity is measured directly from the time averaged tangential force acting on
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FIG. 1. Left: Scheme of computational set-up. The magnetic field H is rotating with angular

frequency ωH in the xz plane while the Newtonian fluid undergoes a shear flow. Right: full

computational domain with the chain and SPH particles. The SPH particles are colored using

their velocity component along the x-axis.

the walls, i.e.

η(γ̇) =
Fx
Aγ̇

, (11)

where A is the surface of the plates.

Fig. 2 shows a complex rheological behaviour including shear-thickening and thinning

effects. At very low shear rates the suspension viscosity η(γ̇) is lower than the matrix fluid

viscosity η0. By increasing the shear rate, a consequent increase of viscosity up to a constant

value of about η/η0 = 1.06 for values of γ̇/ωH ' 1.0 is observed. Further increasing of the

shear rate in the range 2.0 ≤ γ̇/ωH < 3.6 leads to thinning in the viscosity, while for

γ̇/ωH = 3.6 the chain breaks up producing a sudden drop of the viscosity (not shown here).

To better explain this viscosity behaviour, the range of γ̇/ωH analysed will be divided in

three regions: (i) shear thickening for γ̇/ωH ≤ 0.6, (ii) constant viscosity for 0.8 ≤ γ̇/ωH ≤

1.2, (iii) shear thinning 2.0 ≤ γ̇/ωH < 3.6. For each zone plots, the SPH particle non-

dimensional velocities in direction parallel to the flow versus vertical coordinate z will be

analysed, linking them to viscosity time evolution and to particular chain configurations.
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FIG. 2. Time-averaged non-dimensional viscosity η/η0 vs γ̇/ωH . Angular frequency ωH of the

rotating magnetic field was kept fixed in each case.

1. Shear thickening regime: γ̇/ωH ≤ 0.6

Fig. 3 shows the viscosity time evolution for γ̇/ωH ≤ 0.6. Note that, unlike results in

Vazquez-Quesada et al. (2017),29 where the motion of a single chain in an external rotational

magnetic field was studied, here the chain’s angular rotation does not reach a steady state

but a periodic time-dependent modulation is superimposed in the presence of a shear flow.

This leads to the periodicity in the measured viscosity (Fig. 3) and it is consistent with the

rotational motion of elongated rigid objects in a simple uniform shear flow in the absence of

inertial and Brownian forces54. For all the simulation reported in Fig. 3, i.e. for γ̇/ωH ≤ 0.6,

the minimum corresponds to the chain being vertical in the xz plane while the maximum to

the chain being horizontal (see discussion below).

It is possible to note that for this system at γ̇/ωH = 0.16 and γ̇/ωH = 0.2 the non-

dimensional suspension viscosity takes minimum values lower than one (in particular

(η/η0)min = 0.6 for γ̇/ωH = 0.16 and (η/η0)min = 0.72 for γ̇/ωH = 0.2), leading to an

effective dissipation smaller than the pure fluid matrix. This is a very interesting result

since the introduction of solid particles in a fluid usually leads to a rise in the viscosity even

in very dilute systems. However, in the present situation, the rotation of the chains in the

direction of the shear rate forces the fluid to move faster with respect to the situation where

12



no field is applied or if the magnetic field is constant. Similar results have been recently

reported by the application of rotational fields in magnetophoresis34.

Moreover, by increasing the shear rate, whereas the local temporal minima of η increase

monotonically, the maximum values remain nearly constant, with an approximate value of

(η/η0)max = 1.15.

FIG. 3. Non-dimensional viscosity time evolution η(t)/η0 for γ̇/ωH ≤ 0.6. Four complete periods

of rotation shown.

It is possible to understand the viscosity behaviour by a detailed analysis of the transient

flow field for different chain configurations. In particular, the case γ̇/ωH = 0.16 will be

analysed at three particular time instants, highlighted with black dots on Fig. 5. Fig. 6

depicts the chain configurations and related SPH particles non-dimensional velocities at the

corresponding time instants. The x-axis of bottom row of Fig. 6 represents the SPH particles

non-dimensional velocities in direction parallel to the flow, while the y-axis represents SPH

particles vertical coordinate. Particles are classified in four different regions on the direction

orthogonal to the plane of rotation. Each region is represented using different colors to

highlight particles distance from the chain as described in Fig. 4. SPH velocity field close to

the chain is depicted in black, whereas the field corresponding to regions far from the chain

is marked in red.

For the case γ̇/ωH = 0.16, when η/η0 reaches its minimum value (points 1 and 3 of Fig. 5),
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FIG. 4. Region subdivision of the flow field. Red: y/R < 4 ∪ y/R > 21. Blue: 4 < y/R <

7.5 ∪ 17.5 < y/r < 21. Green:7.5 < y/R < 11 ∪ 14 < y/R < 17.5. Black: 11 < y/r < 14.

the chain is in a vertical configuration (see left and right top plots of Fig. 6). In this case,

the chain velocity is higher than the velocity of the surrounding fluid and, as a consequence,

the portions of fluid close to the chain are accelerated (with respect to the imposed shear

flow at the given γ̇). This, in turn, generates a velocity gradient near the wall smaller (or

even opposite in sign) than the applied shear rate γ̇. This results in an overall decrease

of the measured suspension viscosity. Note that a change in sign of the velocity gradient

should lead to a negative viscosity, however, this occurs only locally (in the part of the wall

close to the chain; black/green points in Fig. 6), and therefore it is balanced by the normal

applied shear rate (red points for regions far from the chain), leading globally to a simple

viscosity reduction. The case of larger concentrations and multiple rotating chains leads to

an amplification of this effect and it is discussed in the Sec. IV D and Sec. IV E.

When the chain is in a horizontal configuration (i.e. parallel to the wall: middle plots in

Fig. 6), it is not able to modify appreciably the superimposed velocity gradient near the

wall and, as a consequence, the viscosity reaches its maximum (point 2 in Fig. 5). The same

behaviour could also be observed for the case γ̇/ωH = 0.2.

The increase of the shear rate from γ̇/ωH = 0.2 to γ̇/ωH = 0.4 and γ̇/ωH = 0.6 leads to

changes in the maximum and minimum viscosity values. In particular the minimum values
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FIG. 5. η/η0 time evolution for γ̇/ωH = 0.16. Black dots denote particular chain configurations

in the xz plane: in 1 and 3 the chain is vertical while in 2 is horizontal. Chain configurations and

related SPH particles velocities are shown in Fig. 6

continue to rise significantly from (η/η0)min = 0.93 for γ̇/ωH = 0.4 and (η/η0)min = 0.99 for

γ̇/ωH = 0.6, while the maximum values starts to decrease slightly being (η/η0)max = 1.12

for γ̇/ωH = 0.4 and (η/η0)min = 1.09 for γ̇/ωH = 0.6. Overall, the time-averaged viscosity

increases accordingly to the shear-thickening reported in Fig. 2. The shape of the time

evolution curve for the viscosity shows only minor changes moving from γ̇/ωH = 0.2 to

γ̇/ωH = 0.6.

2. Constant viscosity regime: 0.8 ≤ γ̇/ωH ≤ 1.2

Fig. 7 shows the viscosity time evolution of η(t)/η0 for 0.8 ≤ γ̇/ωH ≤ 1.2. For all the

simulations reported in Fig. 7, the minimum, as for the previous cases, corresponds to the

chain being vertical in the xz plane.

It is also important to note that the general shape of the η(t)/η0 curves is changing with

respect to the cases at γ̇/ωH ≤ 0.6: for γ̇/ωH = 0.8, the maximum is an almost flat and

constant plateau while it is recovered for γ̇/ωH = 1.0 and γ̇/ωH = 1.2. A loss of symmetry

in the chain dynamics is also clearly visible in Fig. 7, which is probably related to the

strong non-linear coupling between the applied shear flow and the forced magnetic rotation

when γ̇/ωH ≈ 1. This non-linear behaviour has been already seen in many experiments

15



FIG. 6. Chain configurations and related SPH particles non-dimensional velocities at γ̇/ωH = 0.16

for the time instant shown in Fig. 5: left 1, center 2, right 3.

and simulations in large-amplitude oscillatory shear (LAOS) flows55,56 where, although in a

different situation, the authors found a similar loss of symmetry on stress curves when the

applied shear strain was higher than 5%.

Similarly to the previous section, for the case γ̇/ωH = 0.8, when the chain is in a vertical

configuration, η(t)/η0 reaches its minimum value (see Supplementary information). Here,

the chain velocity is only slightly higher than the surrounding fluid velocity (corresponding

to the imposed linear profile), leading to a very small acceleration of the portion of fluid

close to the chain. As a consequence, the modified velocity gradient near the wall is only

moderately reduced. This leads to a small minimum in the η(t)/η0 time behaviour only a

3% smaller than the mean value. When η/η0 is almost constant, the chain has an angle

with the horizontal xy-plane θ that varies between 27◦ and 0◦. No particular asymmetry is

observed.

For the case γ̇/ωH = 1.0, when the chain is in vertical configuration, η/η0 reaches its

minimum value η/η0 = 1.03 (see Supplementary information). In this case, the chain velocity

is always very close to that of the surrounding fluid. This means that the chain is no longer
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FIG. 7. Non-dimensional viscosity time evolution η/η0 for 0.8 ≤ γ̇/ωH ≤ 1.2

accelerating the fluid.

It is interesting to note that, in this case, the maximum in the time evolution of η/η0 no

longer corresponds to an horizontal chain, as happened for the cases at η/η0 ≤ 0.8. In the

current case the chain has an angle with the xy-plane, θ of about 34◦. This is the beginning

of a change that will progressively bring the horizontal configuration to correspond to a

minimum in the η/η0 time behaviour whereas the maximum will correspond to configurations

with higher θ-angle, as shown in plots of Fig. 8 and Fig. 10. In other words, when the shear

rate is larger than the rotation frequency, the vertical configuration no longer accelerates the

fluid particles near the wall as much as the shear rate does. Also, chains in a more vertical

position begin to oppose to the shear-rate motion whereas the horizontal configuration shows

the minimum resistance (a further explanation will be given in Sec. IV B 3). As the shear

rate and the rotation frequency are very similar, some coupling between the motion modes

with related non-linear effects could arise.55,56

3. Shear thinning regime: γ̇/ωH ≥ 2.0:

Fig. 8 shows the viscosity time evolution for γ̇/ωH ≥ 2.0. Unlike the previous cases, for

all the simulations reported in Fig. 8 the local minima corresponds to the chain being placed

always horizontally in the xy-plane.

Since the behaviour of the system is similar for all the simulations for γ̇/ωH ≥ 2, only
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FIG. 8. Non-dimensional viscosity time evolution η(t)/η0 for γ̇/ωH ≥ 2.0

the case γ̇/ωH = 2.0 (shown in Fig. 9) will be analysed. In this case, η/η0 does not reach

anymore its minimum value when the chain is in vertical configuration: see points 1 and 5 of

Fig. 9 and related configurations in Fig. 10 (top/bottom left plots). When γ̇/ωH ≥ 2.0, when

the shear rate is larger than the rotation frequency, the chain in vertical position no longer

accelerates the fluid particles, but it opposes a resistance to the motion, similar to what it

happens in conventional magnetorheology for constant magnetic field [e.g. de Vicente et al.

(2011)2].

When η/η0 reaches its maximum value η/η0 = 1.07 (point 2), the chain has an θ-angle

about 63◦. This case is visible from the center-left bottom plot of Fig. 10 where the chain

velocity is significantly lower with respect to that of the surrounding fluid and, as a conse-

quence, the portions of fluid close to the chain are decelerated (with respect to the imposed

shear flow), generating a velocity gradient near the wall larger than the shear rate. This

results in a local temporal increase of the measured suspension viscosity. Thus, the maxi-

mum is not reached in the vertical position, but in a tilted position. This observation is also

consistent with results from micromechanical models with fixed magnetic fields, where the

critical angles where the stress was highest have been reported as θ = 48.2◦,26 or θ = 50.8◦.25.

However, it is important to note that the situation is not similar. The micromechanical mod-

els predicts an elastic deformation of the chains caused by the shear rate until it reaches a

critical angle where the chain begins to break. Here, the chain rotates but the rotational

frequency is always low and the chain would not break. The results from micromechanical

models could explain why a tilted angle (with the shear plane) could lead to the highest
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FIG. 9. η/η0 time evolution for γ̇/ωH = 2.0. Black dots denote particular chain configurations in

the xz plane: in 1 and 5 the chain is vertical while it is horizontal in 3. Point 2 corresponds to the

maximum while point 4 to an intermediate configuration. Chain configurations and related SPH

particles velocities are shown in Fig. 10

stress but it is still not a critical situation where the chain is about to break and this could

explain the differences between the angles.

When the chain is in an horizontal configuration, η/η0 reaches its minimum value

η/η0 = 1.035, corresponding to point 3 of Fig. 9. This is consistent with the fact that,

as shown in the center-right bottom plot of Fig. 10, the presence of the chain only minimally

affects the velocity of the surrounding fluid as it does not longer oppose a resistance to the

flow. Therefore, by increasing the applied shear rate from γ̇/ωH ≤ 1.0 to γ̇/ωH � 1.0, the

same instantaneous chain configuration affects in a different way the local temporal values

of the corresponding measured viscosity.

It is also important to observe that in this regime the time-averaged values of the signals

η(t)/η0 displayed in Fig. 8 (i.e. right part of Fig. 2) show a mild linear decrease with a

coefficient m ≈ −0.0125. This shear-thinning behaviour is consistent with a scenario where

chains are quasi-statically deforming in an external shear flow and it resembles the rheological

results obtained for suspensions of aligned magnetic chains under a fixed external magnetic

field.2,18,22 It is important to note that, for γ̇/ωH � 1, the applied shear rate increases,

and, thus, the Mason number increases. Moreover, the magnetic field can be considered
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FIG. 10. Chain configurations and related SPH particles non-dimensional velocities for the time

instant shown in Fig. 9: left 1 & 5, center-left 2, center-right 3, right 4

quasi-static with respect to the shear rate. This leads to the typical rheological behaviour

reported in magnetorheology,2,18,22 where shear thinning is observed in connection to the

shear rate tending to deform and break the chains (see next section).

C. Analysis of Mason number variation

As discussed in the Introduction, there are two major dimensionless numbers governing

the rheological behaviour of this system: the ratio γ̇/ωH and the Mason number (note that,

given these two numbers, the rotational Mason number is not a free parameter anymore). In

the previous sections, the shear rate was increased whereas the rotation frequency remained

constant (i.e. the rotational Mason number remained fixed). This case is very interesting for

applications as the rotational field leads to different viscosity results from magnetorheology

with fixed magnetic fields.2,22

Only at large γ̇/ωH , where the shear-rate effect is more important, the typical shear-

thinning behaviour obtained with fixed magnetic fields was observed. To better understand

this situation, additional simulations were carried out. In these simulations, the ratio be-

tween the shear rate and the rotation frequency was kept constant, but the Mason number

was varied (both the shear rate and the rotation frequency were changed keeping their ratio
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constant but varying the Mason number).

Results are shown in Fig. 11. In this figure, the time-average non-dimensional viscosity is

represented as a function of the Mason number at different γ̇/ωH corresponding to the cases

discussed before. It should be noticed that, here, the Mason numbers explored were very

low. However, it was not possible to increase further the Mason number without producing

a breakup of the chain and therefore the range of Mn was limited by the critical breakup

frequency ωc which in turn depends the number of chain size as Mnmax ∼ 1/N2.25,33 In

any case, in a very dilute system, the transition between the magnetically-dominated to the

hydrodynamically-dominated regime typically occur at very low Mason numbers.

For all the simulations performed here, the viscosity decreases with the Mason number.

This result was expected as the hydrodynamic interactions tend to overcome the magnetic

attraction and, as a result, to deform the structure reducing the viscosity.2 In typical MR

experiments with fixed magnetic field, viscosity reduces with a nearly-power-law trend with

a slope close to -1 in a log-log scale.2,22,57 After that, at some critical Mason number Mn∗, a

transition occurs and the viscosity changes its trend leading to a leveling-off of the viscosity

value close to the solvent viscosity.

Here, for the smallest value of γ̇/ωH , the trend seems to be power-law (note the log-log

scale in Fig. 11) at very low Mason numbers, in qualitative agreement with the experimental

and theoretical results in magnetorheology with fixed magnetic fields. However, the time-

average viscosity can become lower than the solvent viscosity, as explained in the previous

sections. When the ratio γ̇/ωH increases, the power-law trend is not obtained anymore

and the transition from the magnetically-dominated to the hydrodynamically-dominated

regimes is qualitatively suggested. Also, the critical Mason number, Mn∗ increases with the

ratio γ̇/ωH . This is a quite remarkable observation: as one of the main properties of MR

fluids, the yield stress, is highly affected by the critical Mason number Mn∗,24 the present

results suggest that one possible way to control it, it is by actuating the MR fluid with a

rotating magnetic field with a properly-tuned frequency. Also, it seems that the curves at

high values of γ̇/ωH tend to converge. Since at these values of γ̇/ωH , the shear rate is much

higher than the rotation frequency, the situation would approach that for fixed magnetic

field experiments (in steady shear).

From micromechanical models for fixed magnetic fields, it is possible to predict the vis-

cosity curve as a function of the Mason number.25 Martin and Anderson (1996) developed a
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FIG. 11. Non-dimensional viscosity η/η0 vs the steady shear Mason number, Mn, for different

values of γ̇/ωH . Black line represents the theoretical model curve from Martin and Anderson

(1996):25 η/η0 = 1 +Mn∗/Mn with Mn∗ = 1
5

(
3
2

)5/2
φ ' 0.001

micromechanical model based on torque balancing reporting that the system should follow

a Bigham-like model: η/η∞ = 1+Mn∗/Mn. Here, η∞ is the high-shear suspension viscosity

and it is a function of the particle concentration. They also found that the critical Mason

number only depends (linearly) on the particle concentration: Mn∗ = 1
5

(
3
2

)5/2
φ [see Eqns.

13 and 14 in Martin and Anderson (1996)25]. Moreover, for highly dilute systems, the vis-

cosity of the suspension can be well approximated by the solvent viscosity, i.e. η∞ ' η0. It

is therefore possible to obtain a theoretical approximation of the viscosity curve for fixed

magnetic fields by only knowing the concentration. The black solid line in Fig. 11 repre-

sents precisely the micromechanical model at the concentration explored. The simulation

results at higher Mason number (and for the highest values of γ̇/ωH) are very close to the

theoretical approximation. In spite of this, simulation results at lower Mason numbers show

viscosity values lower than the theoretical predictions for fixed magnetic fields. A possible

explanation could lie in the fact that a rotating chain is in a continuous motion (even if

slow), whereas for fixed magnetic fields, the fluid motion is completely blocked by the gap-

spanning magnetic chains leading to the observed yielding behaviour. When the shear starts

to deform the chains for fixed magnetic fields, the fluid motion is allowed and the results are
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more comparable. This is a quite promising result since new rheological patterns emerge in

these MR suspensions when an external rotating field is modulated.

D. Effect of the solid volume fraction φ

In this section three new simulations have been performed changing the domain size

leading to a different volume fractions occupied by the beads φ = 4πa3N
3V

, with N the total

number of beads and V the computational domain volume. The parameters used for these

simulations are displayed in Tab. I. All the simulations in this section have been performed

using γ̇/ωH = 0.16.

Simulation (a) is the same as that discussed in Sec. IV B 1 and it is reported here as a

reference. The rest of the simulations (b), (c) and (d) have been performed reducing the

domain size in order to increase φ as shown in Tab. I. The chain is always placed at the

center of the computational domain.

Label Lx
/ a×

Ly
a ×

Lz
a φ γ̇/ωH

a 25.0× 25.0× 25.0 1.88−3 0.16

b 16.6× 25.0× 16.6 4.25× 10−3 0.16

c 16.6× 7.5× 16.6 1.42× 10−2 0.16

d 16.6× 5.0× 16.6 2.12× 10−2 0.16

TABLE I. Simulations’ parameters

Fig. 12 shows the viscosity time evolution for γ̇/ωH ≤ 0.16 and for the different domains

described in Tab. I. For all the simulation reported in Fig. 12, the minimum corresponds to

the chain being vertical in the xz plane while the maximum to the chain being horizontal.

From Fig. 12, it is possible to note that while the maximum of the η(t)/η0 time evolutions

for simulations (b), (c) and (d) remains close to that of simulation (a), the minimum decrease

while increasing the solid volume fraction, resulting in an effective decrease of the mean

(time-averaged) value of η/η0. The decreasing trend is close to linear, as shown in Fig. 13,

and it is in apparent contradiction with standard results in suspension rheology where an

overall viscosity increase is observed for increasing φ (e.g. the linear Einstein’s expression

for the relative viscosity in the dilute limit). It must be however noticed that, in this

case, the concentration of actively rotating chains is increased which, in turn, actuates on
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FIG. 12. Non-dimensional viscosity time evolution η(t)/η0 for γ̇/ωH ≤ 0.16 and different volume

fractions φ. Four complete periods of rotation shown.

FIG. 13. Time averaged η/η0 vs solid volume fraction for the simulations shown in Fig. 12. Letters

refers to simulations labels of I. φ0 ' 0.18% is the solid volume fraction of case (a).

the surrounding fluid, leading to an amplification of the viscosity reduction effect already

discussed in Sec. IV B 1.

Fig. 14 shows the velocity field for the two most extreme cases reported in Fig. 12:

simulations (a) and (d). It can be seen that the fluid velocity field is mainly generated by

the chain motion, and it increases in magnitude with the particle concentration. This motion

accelerates elements of fluid close to the chain edges towards velocities larger than the wall
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FIG. 14. SPH velocity fields for four different time instants. For the sake of brevity only simulations

(a), first row, and (d), second row, are represented.

velocity, therefore generating an inverse velocity gradient and the related negative apparent

viscosity discussed above. When chains are more concentrated, as seen in simulations (c)

and (d), the coupled motion is able to change the sign of the stress leading to temporary

negative values of the viscosity, especially when the chains are in vertical position and the

spatial gap with the wall is small. This effect could be relevant in several technological

applications, specially in the field of microfluidics, as rotating magnetic chains can be used

as pumps generating flows or stirrers,58 or valves with a fixed magnetic field where particle

structures can be opposing to the flow rate and blocking gates in a microfluidics channel.59

E. Multiple chains suspension

In the previous sections we have modelled the case of one single chain suspended in a

fluid. In this section, a more realistic situation is considered with multiple chains. Chains

were randomly distributed as represented in Fig. 15. The concentration was set exactly the

same as in all the sections before [concentration (a) in the Sec. IV D]. All the simulations

were performed for a ratio of the shear rate and the rotational frequency, γ̇/ωH = 0.16. The
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Nchains
Lx
a ×

Ly
a ×

Lz
a NSPH η/η0 ση

1 25× 25× 25 466893 0.888 0.001

4 50× 50× 25 1867443 0.889 0.004

16 100× 100× 25 7469903 0.891 0.006

TABLE II. Domain size and total SPH particles for the multimple chains simulations.

number of chains was varied from N = 1 (taken as a reference) up to N = 16. To ensure

the same concentration, the box size was increased in the x and y-directions but not in the

z-direction where the chains almost span the gap between walls. Also, the number of SPH

particles increased in order to keep the same resolution, ∆r/a = 0.3, up to NSPH = 7469903

for the highest number of chains. The number of particles used in each simulation and the

respective domain size are reported in Tab. II.

FIG. 15. Instantaneous SPH velocity field of the system with a number of chains Nchains = 16.

Concentration was φ0 ' 0.18% and the ratio of the shear rate and the rotational frequency,

γ̇/ωH = 0.16. The scale maximum has been set to one for a better flow visualization.

For each chain set-up five different simulations were performed: in each simulation the

chains where given a random initial position with the constrain of avoiding chain-chain

and chain-walls interactions. The mean viscosity η was then evaluated averaging the one

computed using Eq. (11) over the five different realizations. The mean viscosity η together

with its standard deviation ση are reported in Tab. II and Fig. 16. It is important to note
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that in this case the ση gives an estimate of the measured suspension viscosity variability

due to different initial conditions. Looking at the obtained results this variability is always

less then 1% meaning that the measured viscosity is not affected by chains initial positions.

As seen in Fig. 16 the results with multiple chains are very similar to the results with

one single chain, provided that φ is the same. This rules out domain size effects and it

is consistent with the assumption that, in the dilute case, the results with one chain are

sufficiently accurate to represent a real system25.

FIG. 16. Viscosity as a function of the number of chains in the system. Concentration was

φ0 ' 0.18% and the ratio of the shear rate and the rotational frequency, γ̇/ωH = 0.16. The vertical

bars represents the standard deviations ση reported in Tab. II

V. CONCLUSIONS

In this work the dynamics of a single and multiple chains of spherical super-paramagnetic

beads suspended in a Newtonian fluid under the combined effect of an external rotating

magnetic field and a shear flow is investigated. The novel aspect introduced in this study

is the combination of shear flow with a time-dependent (e.g. rotating) magnetic field and

its effect on the resulting suspension rheology. Two non-dimensional numbers are governing

the rheological behaviour of this system: the ratio between the shear rate and the rotation

frequency, γ̇/ωH , and the Mason number, Mn. When a rotating magnetic field is applied, the

measured viscosity oscillates in time with a frequency related to the magnetic field rotation

27



frequency. Results obtained at low γ̇/ωH reveal that the time-average suspension viscosity

shows a marked shear-thickening response and a (time-averaged) suspension viscosity that

can be made lower than the fluid viscosity for small γ̇/ωH . This effect can be significantly

amplified at larger concentrations under the same flow conditions, leading to a sign-change

in the measured viscous response.

When the factor γ̇/ωH increases, the viscosity reaches a maximum around γ̇/ωH ∼ 1

and then it starts to decrease. The latter shear-thinning effect occurring in the regime of

moderate-to-large γ̇/ωH , is similar to what generally observed in conventional magnetorhe-

ology using fixed magnetic fields. However, the critical Mason number (i.e. the transition

from the magnetically-dominated to the hydrodynamic-dominated regimes) decreases with

the ratio γ̇/ωH .
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