8 research outputs found
O&M Models for Ocean Energy Converters: Calibrating through Real Sea Data
Of the cost centres that combine to result in Levelised Cost of Energy (LCOE), O&M costs play a significant part. Several developers have calculated component costs, demonstrating how they can become commercially competitive with other forms of renewable energy. However, there are uncertainties relating to the O&M figures that can only be reduced through lessons learned at sea. This work presents an O&M model calibrated with data from real sea experience of a wave energy device deployed at the Biscay Marine energy Platform (BiMEP): the OPERA O&M Model. Two additional case studies, utilising two other O&M calculation methodologies, are presented for comparison with the OPERA O&M Model. The second case study assumes the inexistence of an O&M model, utilising a Simplified Approach. The third case study applies DTOcean’s (a design tool for ocean energy arrays) O&M module. The results illustrate the potential advantages of utilising real sea data for the calibration and development of an O&M model. The Simplified Approach was observed to overestimate LCOE when compared to the OPERA O&M Model. This work also shows that O&M models can be used for the definition of optimal maintenance plans to assist with OPEX reduction.The authors are grateful to the European commission for funding the OPERA and EnFAIT projects as part of the Horizon 2020 framework. The authors also thankful to Oceantec-Idom for providing feedback to OPERA model’s inputs. A special thanks to Shona Pennock and Donald Noble for their diligent proofreading of this paper
Deep offshore wind farm planning and cost calculation tools
Postprint (published version
A numerical study on the hydrodynamic impact of device slenderness and array size in wave energy farms in realistic wave climates
The future of wave energy converters lies in the design and realization of farms comprising of several devices, given the level of actual power flow for the individual devices and because of several operational issues. Therefore, not only the hydrodynamics of individual and isolated devices should be analysed, but interactions among devices within an array must also be carefully evaluated. In this paper, the authors attempt to parameterize the behaviour of small-, medium- and large-arrays of wave energy converters, in a particular staggered configuration, at four different locations characterized by realistic wave climates. The arrays studied in the present paper consist of heaving cylinders of different slenderness ratios. It turns out that for arrays of very short inter-device distances, regardless of the cylinder and array size, interactions are strong and lead to not negligible effects of destructive interference (total power reduction compared to the sum of isolated devices). Under these conditions, the bigger the array, the stronger the interactions and the higher the loss of power. However, a range of inter-device distances, referred to as intermediate region, where the power absorption is consistent and the interaction effect appears to be positive, has been found. This intermediate region is easily detectable for small arrays, but loses its ideal characteristics with the increase of the size of the array.This project was possible thanks to a collaboration between the University of ENSTA Bretagne in Brest (France) and the area of Marine Renewable Energy at TECNALIA. Tecnalia's authors gratefully acknowledge the support of Basque Government ELKARTEK 2015 program -grant KK-2015/00097- that made this work possible
Improving the OWC Wave Energy Converter Power Take-Off Efficiency throughout Experimental and Numerical Characterisation of an SCIG
The increasing interest in the use of renewable energy technologies is directing attention towards the potential contribution of marine energy technologies, especially ocean wave energy, to world energy demand. While open-sea demonstrations of full-scale devices have been carried out to validate several technologies, the focus now is shifting to optimising the components for efficiency and reliability. The efficiency of the electrical generator plays a crucial role in wave-to-wire numerical models for converting wave energy into usable electricity. It provides essential data that enables the industry to reduce technical risks and uncertainties. Wave-to-wire models typically simplify the generator’s efficiency through assuming a single curve based on the load. This curve is usually provided by the machine manufacturers for the nominal rotational speed. However, the rotational speed varies in the case of air turbines used in OWC devices. Therefore, to accurately estimate decision variables derived from these models, a comprehensive efficiency map is necessary. This map should demonstrate the performance at different rotational speeds and loads, as it directly influences the estimation of key parameters. The main objective of the present work is to improve the generator behaviour of an OWC for different generator operation regimes. For this purpose, a numerical model of the generator’s efficiency will be developed throughout the segregation of losses and validated experimentally. Finally, an optimal control law will be presented to maximise the electrical power output of the wave energy converter, considering the efficiency of both the generator and the turbine
Installation, operation and maintenance of offshore renewables
The chapter deals with the basic concepts of installation, operation and maintenance of offshore renewable energy systems. Whilst focus is given to the offshore wind industry, the extension to ocean energy (wave and tidal) offers a wider perspective on the major issues concerning the installation and maintenance. A reliability-based approach has been adopted for the analysis of the failures, providing an overview about the most common functional decomposition methodologies as well as logistic requirements for the different operations at the various stages of the lifetime of an offshore renewable project. The economic modelling of the operations, based on strategies for their planning, briefly completes the chapter
O&M Models for Ocean Energy Converters: Calibrating through Real Sea Data
Of the cost centres that combine to result in Levelised Cost of Energy (LCOE), O&M costs play a significant part. Several developers have calculated component costs, demonstrating how they can become commercially competitive with other forms of renewable energy. However, there are uncertainties relating to the O&M figures that can only be reduced through lessons learned at sea. This work presents an O&M model calibrated with data from real sea experience of a wave energy device deployed at the Biscay Marine energy Platform (BiMEP): the OPERA O&M Model. Two additional case studies, utilising two other O&M calculation methodologies, are presented for comparison with the OPERA O&M Model. The second case study assumes the inexistence of an O&M model, utilising a Simplified Approach. The third case study applies DTOcean’s (a design tool for ocean energy arrays) O&M module. The results illustrate the potential advantages of utilising real sea data for the calibration and development of an O&M model. The Simplified Approach was observed to overestimate LCOE when compared to the OPERA O&M Model. This work also shows that O&M models can be used for the definition of optimal maintenance plans to assist with OPEX reduction