47,575 research outputs found

    Design of a monitor and simulation terminal (master) for space station telerobotics and telescience

    Get PDF
    Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator

    The connection between entropy and the absorption spectra of Schwarzschild black holes for light and massless scalar fields

    Full text link
    We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value cc, for wavelengths larger than RsR_{s}, in the vicinity of RsR_{s}. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent 'particle' description fails, and the wave nature becomes apparent.Comment: 14 Pages, 4 figures. Accepted for publication in the Journal Entrop

    NuSTAR Observations of G11.2–0.3

    Get PDF
    We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature

    Continuous-wave phase-sensitive parametric image amplification

    Full text link
    We study experimentally parametric amplification in the continuous regime using a transverse-degenerate type-II Optical Parametric Oscillator operated below threshold. We demonstrate that this device is able to amplify either in the phase insensitive or phase sensitive way first a single mode beam, then a multimode image. Furthermore the total intensities of the amplified image projected on the signal and idler polarizations are shown to be correlated at the quantum level.Comment: 14 pages, 7 figures, submitted to Journal of Modern Optics, Special Issue on Quantum Imagin

    SUSY signals at HERA in the no-scale flipped SU(5) supergravity model

    Full text link
    Sparticle production and detection at HERA are studied within the recently proposed no-scale flipped SU(5)SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: e−p→e~L,R−χi0+X,ν~eχ1−+Xe^-p\to \tilde e^-_{L,R}\chi^0_i+X, \tilde \nu_e\chi^-_1+X, where χi0(i=1,2)\chi^0_i(i=1,2) are the two lightest neutralinos and χ1−\chi^-_1 is the lightest chargino. We study the elastic and deep-inelastic contributions to the cross sections using the Weizs\"acker-Williams approximation. We find that the most promising supersymmetric production channel is right-handed selectron (e~R\tilde e_{R}) plus first neutralino (χ10\chi^0_1), with one hard electron and missing energy signature. The ν~eχ1−\tilde\nu_e\chi^-_1 channel leads to comparable rates but also allows jet final states. A right-handedly polarized electron beam at HERA would shut off the latter channel and allow preferentially the former one. With an integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI lower bounds on me~R,mν~e,mχ10m_{\tilde e_R}, m_{\tilde\nu_e},m_{\chi^0_1} by \approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an excellent supersymmetry detector which can provide indirect information about the sparticle masses by measuring the leading proton longitudinal momentum distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1

    Annihilation operators for exponential spaces in subdivision

    Get PDF
    none3siWe investigate properties of differential and difference operators annihilating certain finite-dimensional spaces of exponential functions in two variables that are connected to the representation of real-valued trigonometric and hyperbolic functions. Although exponential functions appear in a variety of contexts, the motivation behind this technical note comes from considering subdivision schemes where annihilation operators play an important role. Indeed, subdivision schemes with the capability of preserving exponential functions can be used to obtain an exact description of surfaces parametrized in terms of trigonometric and hyperbolic functions, and annihilation operators are useful to automatically detect the frequencies of such functions.mixedConti C.; Lopez-Urena S.; Romani L.Conti C.; Lopez-Urena S.; Romani L

    Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms

    Get PDF
    [1] In late October and early November of 2003, the Sun unleashed a powerful series of events known as the Halloween storms. The coronal mass ejections launched by the Sun produced several severe compressions of the magnetosphere that moved the magnetopause inside of geosynchronous orbit. Such events are of interest to satellite operators, and the ability to predict magnetopause crossings along a given orbit is an important space weather capability. In this paper we compare geosynchronous observations of magnetopause crossings during the Halloween storms to crossings determined from the Lyon-Fedder-Mobarry global magnetohydrodynamic simulation of the magnetosphere as well to predictions of several empirical models of the magnetopause position. We calculate basic statistical information about the predictions as well as several standard skill scores. We find that the current Lyon-Fedder-Mobarry simulation of the storm provides a slightly better prediction of the magnetopause position than the empirical models we examined for the extreme conditions present in this study. While this is not surprising, given that conditions during the Halloween storms were well outside the parameter space of the empirical models, it does point out the need for physics-based models that can predict the effects of the most extreme events that are of significant interest to users of space weather forecasts

    Intra- and interspecies interactions between prion proteins and effects of mutations and polymorphisms

    Get PDF
    Recently, crystallization of the prion protein in a dimeric form was reported. Here we show that native soluble homogenous FLAG-tagged prion proteins from hamster, man and cattle expressed in the baculovirus system are predominantly dimeric. The PrP/PrP interaction was confirmed in Semliki Forest virus-RNA transfected BHK cells co-expressing FLAG- and oligohistidine-tagged human PrP. The yeast two-hybrid system identified the octarepeat region and the C-terminal structured domain (aa90-aa230) of PrP as PrP/PrP interaction domains. Additional octarepeats identified in patients suffering from fCJD reduced (wtPrP versus PrP+90R) and completely abolished (PrP+90R versus PrP+90R) the PrP/PrP interaction in the yeast two-hybrid system. In contrast, the Met/Val polymorphism (aa129), the GSS mutation Pro102Leu and the FFI mutation Asp178Asn did not affect PrP/PrP interactions. Proof of interactions between human or sheep and bovine PrP, and sheep and human PrP, as well as lack of interactions between human or bovine PrP and hamster PrP suggest that interspecies PrP interaction studies in the yeast two-hybrid system may serve as a rapid pre-assay to investigate species barriers in prion diseases
    • …
    corecore