5 research outputs found

    A full-scale tidal blade fatigue test using the FastBlade facility

    Get PDF
    Fatigue testing of tidal turbine blades requires the application of cyclic loads without the ability to match the natural frequency of the blade due to their high stiffness and the associated thermal issues of testing composite materials at those frequencies (i.e., 18–20 Hz). To solve this, loading the blades with an auxiliary system is necessary; in most cases, a conventional hydraulic system tends to be highly energy-demanding and inefficient. A regenerative digital displacement hydraulic pump system was employed in the FastBlade fatigue testing facility, which saved up to 75 % compared to a standard hydraulic system. A series of equivalent target loads were defined using Reynolds-Averaged Navier Stokes (RANS) simulations (based on on-site collected water velocity data) and utilised in FastBlade to demonstrate an efficient way to perform fatigue testing. During the test, a series of measurements were performed on the blade response and the Fastblade test structure itself, providing novel insights into the mechanical behaviour of a blade, and enabling improved testing practice for FastBlade. Without catastrophic failure, the blade withstood the principal tidal loading for 20 years (equivalent). This test data will enable FastBlade to identify improvements to the testing procedures, i.e., control strategies, load introduction, instrumentation layout, instrument calibration, and test design

    A full-scale composite tidal blade fatigue test using single and multiple actuators

    Get PDF
    In order to perform fatigue testing on tidal turbine blades, it is necessary to apply cyclic loads that do not match the blade’s natural frequency. This is due to the high stiffness of the blades and the thermal challenges associated with testing composite materials at frequencies typically around 18–20 Hz. To overcome this challenge, auxiliary systems are used to load the blades. However, conventional hydraulic systems commonly used for this purpose are known to be energy-intensive and inefficient. In this work, we present results obtained at the FastBlade fatigue testing facility, which utilises a regenerative digital displacement hydraulic pump system to address these issues. This innovative system has proven to be highly efficient, resulting in up to 75% energy savings compared to standard hydraulic systems. To perform these tests, we first performed a series of Reynolds-Averaged Navier–Stokes (RANS) simulations using on-site water velocity data to determine equivalent target hydrodynamic loads. These target loads are applied to the blades using initially a single contact point and, later, three load contact points. The FastBlade facility showcases an effective approach to fatigue testing during these tests. Throughout the testing process, comprehensive measurements are taken to evaluate the response of the blades and the FastBlade test structure itself. These measurements provide valuable insights into the mechanical behaviour of the blades when a single or multi-actuator setup is used to match the root bending moment and contribute to the refinement of testing practices. Notably, the blades successfully endured the equivalent of 20 years of tides in an accelerated fatigue loading test without experiencing catastrophic failure. The data obtained from these tests will enable the identification of improvements in testing procedures, including control strategies, load introduction methods, instrumentation layout, instrument calibration, and test design. This knowledge will lead to enhanced performance and reliability of the FastBlade facility, further advancing the field of tidal turbine blade testing

    Surface characterization

    No full text
    corecore