132,409 research outputs found

    Quasinormal frequencies of the Dirac field in the massless topological black hole

    Full text link
    Motivated by the recent computations of the quasinormal frequencies of higher dimensional black holes we exactly calculate the quasinormal frequencies of the Dirac field propagating in D-dimensional (D > 4) massless topological black hole. From the exact values of the quasinormal frequencies for the fermion and boson fields we discuss whether the recently proposed bound on the relaxation time of a perturbed thermodynamical system is satisfied in D-dimensional massless topological black hole. Also we study the consequences of these results.Comment: 10 page

    Light dynamics in glass-vanadium dioxide nanocomposite waveguides with thermal nonlinearity

    Get PDF
    We address the propagation of laser beams in Si02-VO2 nanocomposite waveguides with thermo-optical nonlinearity. We show that the large modifications of the absorption coefficient as well as notable changes of refractive index of VO2 nanoparticles embedded into the SiO2 host media that accompany the semiconductor-to-metal phase transition may lead to optical limiting in the near-infrared wave range.Comment: 13 pages, 3 figures, to appear in Optics Letter

    Compressive Sensing for Spectroscopy and Polarimetry

    Full text link
    We demonstrate through numerical simulations with real data the feasibility of using compressive sensing techniques for the acquisition of spectro-polarimetric data. This allows us to combine the measurement and the compression process into one consistent framework. Signals are recovered thanks to a sparse reconstruction scheme from projections of the signal of interest onto appropriately chosen vectors, typically noise-like vectors. The compressibility properties of spectral lines are analyzed in detail. The results shown in this paper demonstrate that, thanks to the compressibility properties of spectral lines, it is feasible to reconstruct the signals using only a small fraction of the information that is measured nowadays. We investigate in depth the quality of the reconstruction as a function of the amount of data measured and the influence of noise. This change of paradigm also allows us to define new instrumental strategies and to propose modifications to existing instruments in order to take advantage of compressive sensing techniques.Comment: 11 pages, 9 figures, accepted for publication in A&
    corecore