807 research outputs found

    Method implementation and technique development for studies with cyanobacteria

    Get PDF
    Dissertação de mestrado em Biotecnologia, área de Engenharia de Bioprocessos.Swedish Energy Agency.Swedish Research Council.Swedish Institute

    Genetic diversity and recent ancestry based on whole-genome sequencing of endangered Swedish cattle breeds

    Get PDF
    Several indigenous cattle breeds in Sweden are endangered. Conservation of their genetic diversity and genomic characterization is a priority.Whole-genome sequences (WGS) with a mean coverage of 25X, ranging from 14 to 41X were obtained for 30 individuals of the breeds Fjallko, Fjallnara, Bohuskulla, Rodkulla, Ringamala, and Vaneko. WGS-based genotyping revealed 22,548,028 variants in total, comprising 18,876,115 single nucleotide polymorphisms (SNPs) and 3,671,913 indels. Out of these, 1,154,779 SNPs and 304,467 indels were novel. Population stratification based on roughly 19 million SNPs showed two major groups of the breeds that correspond to northern and southern breeds. Overall, a higher genetic diversity was observed in the southern breeds compared to the northern breeds. While the population stratification was consistent with previous genome-wide SNP array-based analyses, the genealogy of the individuals inferred from WGS based estimates turned out to be more complex than expected from previous SNP-array based estimates. Polymorphisms and their predicted phenotypic consequences were associated with differences in the coat color phenotypes between the northern and southern breeds. Notably, these high-consequence polymorphisms were not represented in SNP arrays, which are used routinely for genotyping of cattle breeds.This study is the first WGS-based population genetic analysis of Swedish native cattle breeds. The genetic diversity of native breeds was found to be high. High-consequence polymorphisms were linked with desirable phenotypes using whole-genome genotyping, which highlights the pressing need for intensifying WGS-based characterization of the native breeds

    K-12, university students and robots: an early start

    Get PDF
    This paper describes a study carried out with K-12 students. This study proposes to understand the motivation of these students in the use of robots in the Project Area curricular unit and whether they want to continue their studies in technology areas. K-12 students participated in the RoboParty® event, where the main task is to assemble and program a robot. In other words, the students, in a simple and entertaining way and supported by qualified tutors, learned how to build a robot. At the end of the academic year, a questionnaire was applied to identify and evaluate the K-12 students' opinions regarding the experience. The students’ reaction to this experience was quite positive as well the direct contact with the university environment.(undefined

    An early start in robotics: K-12 case-study

    Get PDF
    This paper describes a study carried out with K-12 students. This study is focused on understanding the motivation of these students on the use of robots in the Project Area curricular unit and to understand whether they want to continue their studies in technology areas. K-12 students participated in the RoboParty® event, where the main task is to assemble and program a robot. In other words, the students, in a simple and entertaining way and guided by qualified tutors, learned how to build a robot. At the end of the academic year, a questionnaire was applied to identify and evaluate the K-12 students' opinions regarding the experience. The students’ reaction to this experience as well to the direct contact with the university environment was quite positive.Fundação para a Ciência e a Tecnologia (FCT

    Integument, mortality, and skeletal strength in extended production cycles for laying hens - effects of genotype and dietary zinc source

    Get PDF
    1. This study on long-life layers, covering the period 20-100 weeks of age, investigated longitudinal effects on mortality, layer integument, and skeletal properties in Bovans White (BoW) and Lohmann Selected Leghorn Classic (LSL), with or without supplementation with dietary organic zinc (Zn). 2. Two experiments, using 1440 layers in furnished small group cages (FC) and 1836 layers in a traditional floor housing system (Floor), were run in parallel. Each replicate consisted of five adjacent cages containing eight hens in each FC, or a pen with 102 layers in the Floor group. 3. Mortality was recorded daily. Integument and keel bone condition were scored at 35, 55, 85, and 100 weeks of age on 20% of the layers. Tibial strength was recorded from 933 layers at 100 weeks. Statistical analyses were performed on replicate means, with four to five and nine replicates per combination of hybrid and diet in Floor and FC groups, respectively. 4. Cumulative mortality was 9.6% and 16.3% in FC and Floor, respectively, and increased in the latter part of the production cycle, particularly in the Floor group. 5. In FC, LSL had inferior feather cover, less keel bone deviation, and shorter claws than BoW. In Floor, LSL had superior feather cover, less severe vent wounds, more bumble foot, and cleaner plumage than BoW. In both production systems, claws grew longer and keel bone deviation became more severe with age. 6. In FC, layers fed organic Zn had lower body weight and less keel bone deviation at 100 weeks of age. 7. In conclusion, keel bone integrity, claw length, and mortality rate are potential threats to welfare in long-life layers. Feather pecking is a problem that needs addressing at an early stage in the production period. On the whole, organic Zn did not improve welfare conditions in long-life layers

    Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems

    Get PDF
    Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength

    Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems

    Get PDF
    Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength
    corecore