1,466 research outputs found

    Role of oxidative stress in ERK and p38 MAPK activation induced by the chemical sensitizer DNFB in a fetal skin dendritic cell line

    Get PDF
    The intracellular mechanisms involved in the early phase of dendritic cell (DC) activation upon contact with chemical sensitizers are not well known. The strong skin sensitizer 2,4-dinitrofluorobenzene (DNFB) was shown to induce the activation of mitogen-activated protein kinases (MAPK) in DC. In the present study, we investigated a putative role for oxidative stress in DNFB-induced MAPK activation and upregulation of the costimulatory molecule CD40. In a DC line generated from fetal mouse skin, DNFB induced a significant increase in protein oxidation, measured by the formation of carbonyl groups, while it had almost no effect on lipid peroxidation. The antioxidants glutathione and vitamin E, which inhibit protein and lipid oxidation, respectively, were used to assess the role of oxidative stress in DNFB-induced MAPK activation. Glutathione, but not vitamin E, inhibited DNFB-induced p38 MAPK and ERK1/2 phosphorylation, whereas none of the antioxidants interfered significantly with the DNFB-induced upregulation of CD40 protein levels. Taken together, these results indicate that DNFB activates p38 MAPK and ERK1/2 via production of reactive oxygen species, and that protein oxidation plays an important role in MAPK activation

    Involvement of JAK2 and MAPK on type II nitric oxide synthase expression in skin-derived dendritic cells

    Get PDF
    In this report, we demonstrate that a fetal mouse skin-derived dendritic cell line produces nitric oxide (NO) in response to the endotoxin [lipopolysaccharide (LPS)] and to cytokines [tumor necrosis factor-alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF)]. Expression of the inducible isoform of NO synthase (iNOS) was confirmed by immunofluorescence with an antibody against iNOS. The tyrosine kinase inhibitor genistein decreased LPS- and GM-CSF-induced nitrite (NO(-2)) production. The effect of LPS and cytokines on NO(-2) production was inhibited by the Janus kinase 2 (JAK2) inhibitor tyrphostin B42. The p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB-203580 also reduced the NO(-2) production evoked by LPS, TNF-alpha, or GM-CSF, but it was not as effective as tyrphostin B42. Inhibition of MAPK kinase with PD-098059 also slightly reduced the effect of TNF-alpha or GM-CSF on NO(-2) production. Immunocytochemistry studies revealed that the transcription factor nuclear factor-kappaB was translocated from the cytoplasm into the nuclei of fetal skin-derived dendritic cells (FSDC) stimulated with LPS, and this translocation was inhibited by tyrphostin B42. Our results show that JAK2 plays a major role in the induction of iNOS in FSDC

    Differential activation of nuclear factor kappa B subunits in a skin dendritic cell line in response to the strong sensitizer 2,4-dinitrofluorobenzene

    Get PDF
    Dendritic cell (DC) maturation is essential for the initiation of T-dependent immune responses. Nuclear factor kappa B (NF-kappaB) transcription factors are ubiquitously expressed signalling molecules, known to regulate the transcription of a large number of genes involved in immune responses, including cytokines and cell surface molecules. In this work, we studied the time-dependent activation of five members of the NF-kappaB family, p50, p52, p65, RelB and cRel, in a mouse skin DC line in response to stimulation with the strong sensitizer, 2,4-dinitrofluorobenzene (DNFB). Western blot assay revealed that exposure of fetal skin DC (FSDC) to DNFB induced the degradation of the inhibitor of NF-kappaB (IkappaB). Three out of its five members, i.e. p50, p52, and RelB, were similarly activated upon DNFB stimulation, with subsequent translocation of these subunits from the cytosol to the nucleus, but with different kinetics. In contrast, p65 expression was diminished in both the nucleus and the cytosol. The electrophoretic mobility shift assay (EMSA) showed that exposure of FSDC to DNFB induced DNA binding to NF-kappaB. Together, these results show that DNFB differentially activates the various members of the NF-kappaB family in skin DC

    Granulocyte-macrophage colony-stimulating factor activates the transcription of nuclear factor kappa B and induces the expression of nitric oxide synthase in a skin dendritic cell line.

    Get PDF
    Nitric oxide (NO) produced by skin dendritic cells and keratinocytes plays an important role in skin physiology, growth and remodelling. Nitric oxide is also involved in skin inflammatory processes and in modulating antigen presentation (either enhancing or suppressing it). In this study, we found that GM-CSF stimulates the expression of the inducible isoform of nitric oxide synthase (iNOS) in a fetal-skin-derived dendritic cell line (FSDC) and, consequently, increases the nitrite production from 11.9 +/- 3.2 micromol/L (basal level) to 26.9 +/- 4.2 micromol/L. Pyrrolidinedithiocarbamate (PDTC) inhibits nitrite production, with a half maximal inhibitory concentration (IC50) of 19.3 micromol/L and the iNOS protein expression in FSDC. In addition, western blot assays revealed that exposure of FSDC to GM-CSF induces the phosphorylation and degradation of the inhibitor of NF-kappaB (IkB), with subsequent translocation of the p50, p52 and RelB subunits of the transcription nuclear factor kappa B (NF-kappaB) from the cytosol to the nucleus. Electrophoretic mobility shift assays (EMSA) showed that FSDC exposure to GM-CSF activates the transcription factor NF-kappaB. Together, these results show that GM-CSF induces iNOS expression in skin dendritic cells by a mechanism involving activation of the NF-kappaB pathway

    A novel PAX5 rearrangement in TCF3-PBX1 acute lymphoblastic leukemia: a case report.

    Get PDF
    BACKGROUND: Chromosome translocations are a hallmark of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Additional genomic aberrations are also crucial in both BCP-ALL leukemogenesis and treatment management. Herein, we report the phenotypic and molecular cytogenetic characterization of an extremely rare case of BCP-ALL harboring two concomitant leukemia-associated chromosome translocations: t(1;19)(q23;q13.3) and t(9;17)(p13;q11.2). Of note, we described a new rearrangement between exon 6 of PAX5 and a 17q11.2 region, where intron 3 of SPECC1 is located. This rearrangement seems to disrupt PAX5 similarly to a PAX5 deletion. Furthermore, a distinct karyotype between diagnosis and relapse samples was observed, disclosing a complex clonal evolution during leukemia progression. CASE PRESENTATION: A 16-year-old boy was admitted febrile with abdominal and joint pain. At clinical investigation, he presented with anemia, splenomegaly, low white blood cell count and 92% lymphoblast. He was diagnosed with pre-B ALL and treated according to high risk GBTLI-ALL2009. Twelve months after complete remission, he developed a relapse in consequence of a high central nervous system and bone marrow infiltration, and unfortunately died. CONCLUSIONS: To our knowledge, this is the first report of a rearrangement between PAX5 and SPECC1. The presence of TCF3-PBX1 and PAX5-rearrangement at diagnosis and relapse indicates that both might have participated in the malignant transformation disease maintenance and dismal outcome

    Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period

    Get PDF
    From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin). We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceano-graphic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01%) was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer-(inter-annual) or shorter-term fluctuations (upwelling-related). Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in relation to changing physical forcing which is fundamental to improve predictability of future prospects under climate change.Portuguese Foundation for Science and Technology (FCT, Portugal) [SFRH/BPD/ 94562/2013]; FEDER funds; national funds; CESAM [UID/AMB/50017]; FCT/MEC through national funds; FEDERinfo:eu-repo/semantics/publishedVersio

    Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure

    Get PDF
    Background: While moderate and vigorous leisure time physical activities are well documented to decrease the risk for cardiovascular disease, several studies have demonstrated an increased risk for cardiovascular disease in workers with high occupational activity. Research on the underlying causes to the contrasting effects of occupational and leisure time physical activity on cardiovascular health is lacking. The aim of this study was to examine the relation of objective and self-report measures of occupational and leisure time physical activity with 24-h ambulatory systolic blood pressure (BP). Methods: Results for self-reported physical activity are based on observations in 182 workers (60% male, mean age 51 years), while valid objective physical activity data were available in 151 participants. The usual level of physical activity was assessed by 5 items from the Job Content Questionnaire (high physical effort, lifting heavy loads, rapid physical activity, awkward body positions and awkward positions of head or arms at work) and one item asking about the general level of physical activity during non-working time. On a regular working day, participants wore an ambulatory BP monitor and an accelerometer physical activity monitor during 24 h. Associations were examined by means of Analysis of Covariance. Results: Workers with an overall high level of self-reported occupational physical activity as well as those who reported to often lift heavy loads at work had a higher mean systolic BP at work, at home and during sleep. However, no associations were observed between objectively measured occupational physical activity and BP. In contrast, those with objectively measured high proportion of moderate and vigorous leisure time physical activity had a significantly lower mean systolic BP during daytime, while no differences were observed according to self-reported level of leisure time physical activity. Conclusions: These findings suggest that workers reporting static occupational physical activities, unlike general physically demanding tasks characterized by dynamic movements of large muscle groups, are related to a higher daily systolic BP, while high objective levels of moderate and vigorous leisure time physical activity are related to lower daytime systolic BP. Ambulatory systolic BP may be a physiological explanatory factor for the contrasting effects of occupational and leisure time physical activity
    corecore