7 research outputs found

    Preparation of Au Nanostructure Arrays for Fluorometry and Biosensors Applications

    Get PDF
    The paper describes the fabrication of random and ordered gold nanostructure arrays (NSA) of different morphology using island film thermal annealing and nanoimprint lithography techniques. Structural parameters of obtained NSA were investigated using atomic force microscopy method. Spectral characteristics of obtained NSA were studied in air atmosphere, and NSA light extinction spectra exhibited an expressed plasmon peak. Spectral position of localized surface plasmon resonance can be tuned depending on geometrical parameters of nanostructures, which is an important factor for resonant investigation methods of various types of molecular structures. Proposed technological approaches can be used to implement the resonance fluorometry in electromagnetic field of nanostructures (surface-enhanced fluorescence) method and in chemical and biosensors based on localized surface plasmon resonance. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3496

    Localized surface plasmon resonance in Au nanoprisms on glass substrates

    No full text
    Metal nanocrystals are actual objects for the modern biophysics mainly because of their usage in sensors based on localized surface plasmon resonance (LSPR) and as active substrates for surface-enhanced spectroscopies. This work deals with the experimental and theoretical investigation of optical properties of trigonal and hexagonal Au nanoprisms deposited on the glass substrates. It was confirmed for the studied structures that the LSPR spectra depend on the crystals shape and size. Theoretical modeling the optical properties of plasmon-supporting nanoprisms was performed using the finite-difference time-domain method. The experimentally obtained and theoretically modeled LSPR spectral positions were found to be different, which can be attributed to a high spread of nanoprism shapes and sizes in the same sample and to nanocrystals aggregation effect confirmed by microscopy data. Additionally, the distributions of the electric field in the vicinity of nanoprisms under the LSPR conditions were simulated, and a strong field intensity enhancement at the corners of the prisms was demonstrated, which implies the promising application of such plasmonic nanostructures for surfaceenhanced spectroscopy

    Factor of interfacial potential for the surface plasmon-polariton resonance sensor response

    No full text
    In this work, we investigate how the application of an external potential difference to the sensitive gold-electrolyte interface influences the optical response of a sensor based on the surface plasmon-polariton resonance (SPPR). The SPPR resonant angle shift was registered for an aqueous solution of sulfuric acid as an electrolyte at different potential sweep rates. From the measurements of SPPR curves versus the applied voltage, the potential of zero charge of the gold electrode in the electrolyte solution was estimated. To explain the external voltage influence on the SPPR sensor response, a theoretical model was used that takes into account three factors: free electron concentration change in the space-charge layer (SCL) in the surface layer of gold, dependence of the capacity of electrical double layer at the interface on the voltage, and gold film surface roughness

    Surface plasmon resonance investigation of DNA hybridization on a sensor surface using gold nanoparticles modified by specific oligonucleotides

    No full text
    Aim. To investigate an influence of the oligonucleotide concentration on their immobilization on the surface of gold nanoparticles (AuNPs), and to study interactions between the AuNPs modified by various oligonucleotides and the oligonucleotides immobilized on the chip of the SPR-based DNA-sensor. Methods. Oligonucleotide immobilization on the surface of AuNPs was investigated by fluorescence spectrometry. The interactions of citrate-stabilized AuNPs modified by oligonucleotides with the oligonucleotides immobilized on the chip of the DNA-sensor were studied by the surface plasmon resonance spectrometry. Results. The initial oligonucleotide concentration influences the level of their immobilization on the surface of citrate-stabilized AuNPs: up to 200 nM the dependence was close to linear, and then saturation was observed at ~ 26 molecules per particle or ~ 0.5Γ—10ΒΉΒ³ molecules cm⁻². In contrast, the efficiency of immobilization gradually decreased with an increase in the initial oligonucleotide concentration. Using the SPR-based DNA-sensor, the efficient hybridization between oligonucleotides immobilized on the sensor chip and complementary oligonucleotides of various length (short T2-11m and long T2-18m) immobilized on the surface of AuNPs was demonstrated. In case of AuNPs modified by short oligonucleotides, efficient thermal and chemical regenerations of the bioselective element of the DNA-sensor were achieved. Conclusions. Oligonucleotide immobilization on the surface of AuNPs directly depends on the initial oligonucleotide concentration, whereas the initial oligonucleotide concentration and the efficiency of their immobilization on the surface of AuNPs demonstrate the inverse relationship. The efficient hybridization of the oligonucleotides of various lengths immobilized on AuNPs with the oligonucleotides immobilized on the sensor surface as well as the possibility of thermal or chemical regeneration allow the sensor reuse and a strong amplification of the sensor signal.ΠœΠ΅Ρ‚Π°. ВивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° Ρ—Ρ… Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– наночастинок Π·ΠΎΠ»ΠΎΡ‚Π° (AuNPs) Ρ‚Π° виявлСння дСяких особливостСй Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΡ– Π”ΠΠš-сСнсора ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π Ρ–Π²Π΅Π½ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs дослідТували Ρ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΡŽ ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ”ΡŽ. Взаємодія стабілізованих Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΡ– Π”ΠΠš-сСнсора, Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π·Π° допомогою спСктромСтрії ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠŸΡ€ΠΈ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– стабілізованих Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²Π° концСнтрація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° Ρ€Ρ–Π²Π΅Π½ΡŒ Ρ—Ρ… Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ—: Π΄ΠΎ 200 нМ Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ Π±ΡƒΠ»Π° близькою Π΄ΠΎ Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΡ—, Π° ΠΏΠΎΡ‚Ρ–ΠΌ спостСрігали наблиТСння Π΄ΠΎ насичСння (~26 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° ΠΎΠ΄Π½Ρƒ частинку Π°Π±ΠΎ ~0,5 Γ— 10ΒΉΒ³ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» см⁻²). На Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ Ρ†ΡŒΠΎΠ³ΠΎ, Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— поступово Π·ΠΌΠ΅Π½ΡˆΡƒΡ”Ρ‚ΡŒΡΡ Ρ€Π°Π·ΠΎΠΌ Ρ–Π· Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½ΡΠΌ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π². Π’ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Π”ΠΠš-сСнсор ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу, продСмонстрували Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρƒ Π³Ρ–Π±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†Ρ–ΡŽ ΠΌΡ–ΠΆ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° сСнсорному Ρ‡ΠΈΠΏΡ–, Ρ‚Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ Ρ€Ρ–Π·Π½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ (ΠΊΠΎΡ€ΠΎΡ‚ΠΊΡ– T2-11m Ρ– Π΄ΠΎΠ²Π³Ρ– T2-18m), Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs. Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π±ΡƒΠ»ΠΈ досягнуті Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Π° Ρ‚Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½Π° рСгСнСрація біосСлСктивного Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° Π”ΠΠš-сСнсора. Висновки. Π Ρ–Π²Π΅Π½ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs прямо ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†Ρ–ΠΉΠ½ΠΎ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π², Ρ‚ΠΎΠ΄Ρ– як Π²ΠΈΡ…Ρ–Π΄Π½Π° концСнтрація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Ρ‚Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ—Ρ… Ρ–ΠΌ-ΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒ Π·Π²ΠΎΡ€ΠΎΡ‚Π½ΠΈΠΉ зв’язок. Π•Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π° гібридизація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… Π½Π° AuNPs, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– сСнсора, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΡ— Π°Π±ΠΎ Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†Ρ–Ρ— Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Π±Π°Π³Π°Ρ‚ΠΎΡ€Π°Π·ΠΎΠ²ΠΎ використовувати сСнсор Ρ‚Π° досягати Π²Π΅Π»ΠΈΡ‡Π΅Π·Π½ΠΎΠ³ΠΎ підсилСння сСнсорного сигналу.ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π½Π° повСрхности наночастиц Π·ΠΎΠ»ΠΎΡ‚Π° (AuNPs) ΠΈ выявлСниС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… особСнностСй взаимодСйствия AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΠ΅ Π”ΠΠš-сСнсора повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности AuNPs исслСдовали флуорСсцСнтной спСктромСтриСй. ВзаимодСйствиС стабилизированных Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΠ΅ Π”ΠΠš-сСнсора, ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ спСктромСтрии повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности стабилизированных Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ концСнтрация ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² влияСт Π½Π° ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ: Π΄ΠΎ 200 нМ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π±Ρ‹Π»Π° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Π° Π·Π°Ρ‚Π΅ΠΌ наблюдали ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊ Π½Π°ΡΡ‹Ρ‰Π΅Π½ΠΈΡŽ (~26 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° ΠΎΠ΄Π½Ρƒ частицу ΠΈΠ»ΠΈ ~0,5 Γ— 10ΒΉΒ³ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» см⁻²). Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ этого, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ постСпСнно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ вмСстС с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π”ΠΠš-сСнсор повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса, продСмонстрировали ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° сСнсорном Ρ‡ΠΈΠΏΠ΅, ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ (ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ T2-11m ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ T2-18m), ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности AuNPs. Π’ случаС AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π±Ρ‹Π»ΠΈ достигнуты эффСктивныС тСрмичСская ΠΈ химичСская рСгСнСрация биосСлСктивного элСмСнта Π”ΠΠš-сСнсора. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности AuNPs пря-ΠΌΠΎ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ зависит ΠΎΡ‚ исходной ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ исходная концСнтрация ΠΎΠ»ΠΈ-Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° повСрхности AuNPs Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ связь. ЭффСктивная гибридизация ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° AuNPs, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности сСнсора, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ тСрмичСской ΠΈΠ»ΠΈ химичСской Ρ€Π΅-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ сСнсор ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ³ΠΎ усилСния сСнсорного сигнала

    Plasmon-enhanced fluorometry based on gold nanostructure arrays. Method and device

    No full text
    In this work, we describe a method of surface-enhanced fluorometry, based on the phenomenon of localized surface plasmon resonance in unordered gold nanostructure arrays. The theoretical approach for the model system β€œgold nanoparticle-dielectric spacer” in the electrostatic approximation by solution of Laplace’s equation is considered. The developed technology for manufacturing the plasmonic substrates as well as design of the novel laser-based compact fluorometer are presented. The arrays of gold nanostructures on solid substrates (nanochips) coated with different thicknesses of SiOβ‚‚ were developed and fabricated by thermal annealing of gold island films with subsequent dielectric spacer deposition. As an example for verification of the proposed method, the fluorescence properties of the system β€œgold nanostructures array – SiOβ‚‚ dielectric coating – Rhodamine 6G” were studied. It has been shown that enhancement of dye emission up to 22 times for dielectric coating with the thickness of about 20 nm is possible. Presented method is of importance for the development of the novel nanoscale sensors, biomolecular assays and nanoplasmonic devices

    Smart nanocarriers for drug delivery: controllable LSPR tuning

    No full text
    Gold nanostructures are considered as a potential platform for building smart nanocarriers that will form the basis of novel methods of targeted delivery and controlled release of drugs. However, to ensure maximum efficiency of gold nanoparticles upon the drug release via the plasmon-enhanced photothermal effect, it is necessary to optimize their spectral parameters for operation in the human body that requires both theoretical research and development of appropriate methods for nanostructures fabrication. In this work, mathematical modeling of light extinction spectral dependences for gold nanostructures of different morphology was performed to determine their geometric parameters that provide the occurrence of localized surface plasmon resonance (LSPR) in the red and near infrared regions of the spectrum, where the transparency window of biological tissues exists. Based on the results of previous studies and computer modeling, using hollow gold nanoshells to construct smart nanocarriers was found to be most reasonable. A protocol for production of these nanoparticles based on β€œsilver-gold” galvanic replacement reaction, which is accompanied by a controlled shift of the LSPR wavelength position, was proposed and described in detail. It is shown that the loading of model biomolecules in hollow gold nanoshells significantly changes the output optical parameters of the system under investigation, which should be taken into account for matching with the laser excitation wavelength during the development of smart nanocarriers

    Surface plasmon resonance investigation of DNA hybridization on a sensor surface using gold nanoparticles modified by specific oligonucleotides

    No full text
    Aim. To investigate an influence of the oligonucleotide concentration on their immobilization on the surface of gold nanoparticles (AuNPs), and to study interactions between the AuNPs modified by various oligonucleotides and the oligonucleotides immobilized on the chip of the SPR-based DNA-sensor. Methods. Oligonucleotide immobilization on the surface of AuNPs was investigated by fluorescence spectrometry. The interactions of citrate-stabilized AuNPs modified by oligonucleotides with the oligonucleotides immobilized on the chip of the DNA-sensor were studied by the surface plasmon resonance spectrometry. Results. The initial oligonucleotide concentration influences the level of their immobilization on the surface of citrate-stabilized AuNPs: up to 200 nM the dependence was close to linear, and then saturation was observed at ~ 26 molecules per particle or ~ 0.5Γ—10ΒΉΒ³ molecules cm⁻². In contrast, the efficiency of immobilization gradually decreased with an increase in the initial oligonucleotide concentration. Using the SPR-based DNA-sensor, the efficient hybridization between oligonucleotides immobilized on the sensor chip and complementary oligonucleotides of various length (short T2-11m and long T2-18m) immobilized on the surface of AuNPs was demonstrated. In case of AuNPs modified by short oligonucleotides, efficient thermal and chemical regenerations of the bioselective element of the DNA-sensor were achieved. Conclusions. Oligonucleotide immobilization on the surface of AuNPs directly depends on the initial oligonucleotide concentration, whereas the initial oligonucleotide concentration and the efficiency of their immobilization on the surface of AuNPs demonstrate the inverse relationship. The efficient hybridization of the oligonucleotides of various lengths immobilized on AuNPs with the oligonucleotides immobilized on the sensor surface as well as the possibility of thermal or chemical regeneration allow the sensor reuse and a strong amplification of the sensor signal.ΠœΠ΅Ρ‚Π°. ВивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° Ρ—Ρ… Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– наночастинок Π·ΠΎΠ»ΠΎΡ‚Π° (AuNPs) Ρ‚Π° виявлСння дСяких особливостСй Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΡ– Π”ΠΠš-сСнсора ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Π Ρ–Π²Π΅Π½ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs дослідТували Ρ„Π»ΡƒΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΡŽ ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€Ρ–Ρ”ΡŽ. Взаємодія стабілізованих Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΡ– Π”ΠΠš-сСнсора, Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π·Π° допомогою спСктромСтрії ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. ΠŸΡ€ΠΈ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– стабілізованих Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²Π° концСнтрація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π²ΠΏΠ»ΠΈΠ²Π°Ρ” Π½Π° Ρ€Ρ–Π²Π΅Π½ΡŒ Ρ—Ρ… Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ—: Π΄ΠΎ 200 нМ Π·Π°Π»Π΅ΠΆΠ½Ρ–ΡΡ‚ΡŒ Π±ΡƒΠ»Π° близькою Π΄ΠΎ Π»Ρ–Π½Ρ–ΠΉΠ½ΠΎΡ—, Π° ΠΏΠΎΡ‚Ρ–ΠΌ спостСрігали наблиТСння Π΄ΠΎ насичСння (~26 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° ΠΎΠ΄Π½Ρƒ частинку Π°Π±ΠΎ ~0,5 Γ— 10ΒΉΒ³ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» см⁻²). На Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ Ρ†ΡŒΠΎΠ³ΠΎ, Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— поступово Π·ΠΌΠ΅Π½ΡˆΡƒΡ”Ρ‚ΡŒΡΡ Ρ€Π°Π·ΠΎΠΌ Ρ–Π· Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½ΡΠΌ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π². Π’ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Π”ΠΠš-сСнсор ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Π΅Π²ΠΎΠ³ΠΎ ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонансу, продСмонстрували Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρƒ Π³Ρ–Π±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†Ρ–ΡŽ ΠΌΡ–ΠΆ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° сСнсорному Ρ‡ΠΈΠΏΡ–, Ρ‚Π° ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ Ρ€Ρ–Π·Π½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ (ΠΊΠΎΡ€ΠΎΡ‚ΠΊΡ– T2-11m Ρ– Π΄ΠΎΠ²Π³Ρ– T2-18m), Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs. Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΈΡ… ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π±ΡƒΠ»ΠΈ досягнуті Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ– Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Π° Ρ‚Π° Ρ…Ρ–ΠΌΡ–Ρ‡Π½Π° рСгСнСрація біосСлСктивного Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π° Π”ΠΠš-сСнсора. Висновки. Π Ρ–Π²Π΅Π½ΡŒ Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs прямо ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†Ρ–ΠΉΠ½ΠΎ Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΡ— ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π², Ρ‚ΠΎΠ΄Ρ– як Π²ΠΈΡ…Ρ–Π΄Π½Π° концСнтрація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Ρ‚Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Ρ—Ρ… Ρ–ΠΌ-ΠΌΠΎΠ±Ρ–Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– AuNPs Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΡƒΡŽΡ‚ΡŒ Π·Π²ΠΎΡ€ΠΎΡ‚Π½ΠΈΠΉ зв’язок. Π•Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π° гібридизація ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Ρ–Π² Ρ€Ρ–Π·Π½ΠΎΡ— Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΡ… Π½Π° AuNPs, Π· ΠΎΠ»Ρ–Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Ρ–ΠΌΠΌΠΎΠ±Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½Ρ– сСнсора, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΡ— Π°Π±ΠΎ Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΎΡ— Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†Ρ–Ρ— Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Π±Π°Π³Π°Ρ‚ΠΎΡ€Π°Π·ΠΎΠ²ΠΎ використовувати сСнсор Ρ‚Π° досягати Π²Π΅Π»ΠΈΡ‡Π΅Π·Π½ΠΎΠ³ΠΎ підсилСння сСнсорного сигналу.ЦСль. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π½Π° повСрхности наночастиц Π·ΠΎΠ»ΠΎΡ‚Π° (AuNPs) ΠΈ выявлСниС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… особСнностСй взаимодСйствия AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΠ΅ Π”ΠΠš-сСнсора повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности AuNPs исслСдовали флуорСсцСнтной спСктромСтриСй. ВзаимодСйствиС стабилизированных Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° Ρ‡ΠΈΠΏΠ΅ Π”ΠΠš-сСнсора, ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ спСктромСтрии повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности стабилизированных Ρ†ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠΌ AuNPs Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ концСнтрация ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² влияСт Π½Π° ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ: Π΄ΠΎ 200 нМ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π±Ρ‹Π»Π° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Π° Π·Π°Ρ‚Π΅ΠΌ наблюдали ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊ Π½Π°ΡΡ‹Ρ‰Π΅Π½ΠΈΡŽ (~26 ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» Π½Π° ΠΎΠ΄Π½Ρƒ частицу ΠΈΠ»ΠΈ ~0,5 Γ— 10ΒΉΒ³ ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» см⁻²). Π’ ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ этого, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ постСпСнно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ вмСстС с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ². Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π”ΠΠš-сСнсор повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса, продСмонстрировали ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° сСнсорном Ρ‡ΠΈΠΏΠ΅, ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹ΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ (ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠ΅ T2-11m ΠΈ Π΄Π»ΠΈΠ½Π½Ρ‹Π΅ T2-18m), ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности AuNPs. Π’ случаС AuNPs, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΠΌΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, Π±Ρ‹Π»ΠΈ достигнуты эффСктивныС тСрмичСская ΠΈ химичСская рСгСнСрация биосСлСктивного элСмСнта Π”ΠΠš-сСнсора. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π£Ρ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Π½Π° повСрхности AuNPs пря-ΠΌΠΎ ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ зависит ΠΎΡ‚ исходной ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ², Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ исходная концСнтрация ΠΎΠ»ΠΈ-Π³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° повСрхности AuNPs Π΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ связь. ЭффСктивная гибридизация ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄ΠΎΠ² Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π° AuNPs, с ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡƒΠΊΠ»Π΅ΠΎΡ‚ΠΈΠ΄Π°ΠΌΠΈ, ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ Π½Π° повСрхности сСнсора, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ тСрмичСской ΠΈΠ»ΠΈ химичСской Ρ€Π΅-Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ сСнсор ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ ΠΎΠ³Ρ€ΠΎΠΌΠ½ΠΎΠ³ΠΎ усилСния сСнсорного сигнала
    corecore