122 research outputs found

    Low-temperature magnetism in the honeycomb systems SrLn2O4

    Full text link
    Recent progress in the understanding of the complex magnetic properties of the family of rare-earth strontium oxides, SrLn2O4, is reviewed. These compounds consisting of hexagons and triangles are affected by geometrical frustration and therefore exhibit its characteristic features, such as a significant reduction of magnetic ordering temperatures and complex phase diagrams in an applied field. Some of the observed features appear to be rather remarkable even in the context of the unusual behavior associated with geometrically frustrated magnetic systems. Of particular interest is the coexistence at the lowest temperature of different magnetic structures (exhibiting either long or short-range order) characterized by different propagation vectors in materials without significant chemical or structural disorder.Comment: Review Articl

    The impact of drought on wheat leaf cuticle properties

    Get PDF
    BACKGROUND: The plant cuticle is the outermost layer covering aerial tissues and is composed of cutin and waxes. The cuticle plays an important role in protection from environmental stresses and glaucousness, the bluish-white colouration of plant surfaces associated with cuticular waxes, has been suggested as a contributing factor in crop drought tolerance. However, the cuticle structure and composition is complex and it is not clear which aspects are important in determining a role in drought tolerance. Therefore, we analysed residual transpiration rates, cuticle structure and epicuticular wax composition under well-watered conditions and drought in five Australian bread wheat genotypes, Kukri, Excalibur, Drysdale, RAC875 and Gladius, with contrasting glaucousness and drought tolerance. RESULTS: Significant differences were detected in residual transpiration rates between non-glaucous and drought-sensitive Kukri and four glaucous and drought-tolerant lines. No simple correlation was found between residual transpiration rates and the level of glaucousness among glaucous lines. Modest differences in the thickness of cuticle existed between the examined genotypes, while drought significantly increased thickness in Drysdale and RAC875. Wax composition analyses showed various amounts of C31 ß-diketone among genotypes and increases in the content of alkanes under drought in all examined wheat lines. CONCLUSIONS: The results provide new insights into the relationship between drought stress and the properties and structure of the wheat leaf cuticle. In particular, the data highlight the importance of the cuticle’s biochemical makeup, rather than a simple correlation with glaucousness or stomatal density, for water loss under limited water conditions.Huihui Bi, Nataliya Kovalchuk, Peter Langridge, Penny J. Tricker, Sergiy Lopato, and Nikolai Borisju

    Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes

    Get PDF
    Published online: 4 February 2017The cuticle forms a hydrophobic waxy layer that covers plant organs and provides protection from biotic and abiotic stresses. Transcription of genes responsible for cuticle formation is regulated by several types of transcription factors (TFs). Five orthologous to WAX PRODUCTION (WXP1 and WXP2) genes from Medicago truncatula were isolated from a cDNA library prepared from flag leaves and spikes of drought tolerant wheat (Triticum aestivum, breeding line RAC875) and designated TaWXP-like (TaWXPL) genes. Tissue-specific and drought-responsive expression of TaWXPL1D and TaWXPL2B was investigated by quantitative RT-PCR in two Australian wheat genotypes, RAC875 and Kukri, with contrasting glaucousness and drought tolerance. Rapid dehydration and/or slowly developing cyclic drought induced specific expression patterns of WXPL genes in flag leaves of the two cultivars RAC875 and Kukri. TaWXPL1D and TaWXPL2B proteins acted as transcriptional activators in yeast and in wheat cell cultures, and conserved sequences in their activation domains were localised at their C-termini. The involvement of wheat WXPL TFs in regulation of cuticle biosynthesis was confirmed by transient expression in wheat cells, using the promoters of wheat genes encoding two cuticle biosynthetic enzymes, the 3-ketoacyl-CoA-synthetase and the cytochrome P450 monooxygenase. Using the yeast 1-hybrid (Y1H) assay we also demonstrated the differential binding preferences of TaWXPL1D and TaWXPL2B towards three stress-related DNA cis-elements. Protein structural determinants underlying binding selectivity were revealed using comparative 3D molecular modelling of AP2 domains in complex with cis-elements. A scheme is proposed, which links the roles of WXPL and cuticle-related MYB TFs in regulation of genes responsible for the synthesis of cuticle components.Huihui Bi, Sukanya Luang, Yuan Li, Natalia Bazanova, Nikolai Borisjuk, Maria Hrmova, Sergiy Lopat

    Isolation of plant transcription factors using a modified yeast one-hybrid system

    Get PDF
    BACKGROUND: The preparation of expressional cDNA libraries for use in the yeast two-hybrid system is quick and efficient when using the dedicated Clontech™ product, the MATCHMAKER Library Construction and Screening Kit 3. This kit employs SMART technology for the amplification of full-length cDNAs, in combination with cloning using homologous recombination. Unfortunately, such cDNA libraries prepared directly in yeast can not be used for the efficient recovery of purified plasmids and thus are incompatible with existing yeast one-hybrid systems, which use yeast transformation for the library screen. RESULTS: Here we propose an adaptation of the yeast one-hybrid system for identification and cloning of transcription factors using a MATCHMAKER cDNA library. The procedure is demonstrated using a cDNA library prepared from the liquid part of the multinucleate coenocyte of wheat endosperm. The method is a modification of a standard one-hybrid screening protocol, utilising a mating step to introduce the library construct and reporter construct into the same cell. Several novel full length transcription factors from the homeodomain, AP2 domain and E2F families of transcription factors were identified and isolated. CONCLUSION: In this paper we propose a method to extend the compatibility of MATCHMAKER cDNA libraries from yeast two-hybrid screens to one-hybrid screens. The utility of the new yeast one-hybrid technology is demonstrated by the successful cloning from wheat of full-length cDNAs encoding several transcription factors from three different families

    Generation of drought-resistant transgenic cereals using transcription factors isolated from wheat grain

    Get PDF
    Tese de doutoramento em Ciências da Saúde, ramo de Medicina, na especialidade de Medicina Interna (Cardiologia), apresentada à Faculdade de Medicina da Universidade de Coimbr

    Molecular interaction of the gamma-clade homeodomain-leucine zipper class I transcription factors during the wheat response to water deficit

    Get PDF
    The ᵧ-clade of class I homeodomain-leucine zipper (HD-Zip I) transcription factors (TFs) constitute members which play a role in adapting plant growth to conditions of water deficit. Given the importance of wheat (Triticum aestivum L.) as a global food crop and the impact of water deficit upon grain yield, we focused on functional aspects of wheat drought responsive HD-Zip I TFs. While the wheat ᵧ-clade HD-Zip I TFs share significant sequence similarities with homologous genes from other plants, the clade-specific features in transcriptional response to abiotic stress were detected. We demonstrate that wheat TaHDZipI- 3, TaHDZipI-4, and TaHDZipI-5 genes respond differentially to a variety of abiotic stresses, and that proteins encoded by these genes exhibit pronounced differences in oligomerisation, strength of DNA binding, and trans-activation of an artificial promoter. Three-dimensional molecular modelling of the protein-DNA interface was conducted to address the ambiguity at the central nucleotide in the pseudo-palindromic cis-element CAATNATTG that is recognised by all three HD-Zip I proteins. The coexpression of these genes in the same plant tissues together with the ability of HD-Zip I TFs of the ᵧ -clade to heterodimerise suggests a role in the regulatory mechanisms of HD-Zip I dependent transcription. Our findings highlight the complexity of TF networks involved in plant responses to water deficit. A better understanding of the molecular complexity at the protein level during crop responses to drought will enable adoption of efficient strategies for production of cereal plants with enhanced drought tolerance.John C. Harris, Pradeep Sornaraj, Mathew Taylor, Natalia Bazanova, Ute Baumann, Ben Lovell, Peter Langridge, Sergiy Lopato, Maria Hrmov

    Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat

    Get PDF
    Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression.Omid Eini, Nannan Yang, Tatiana Pyvovarenko, Katherine Pillman, Natalia Bazanova, Natalia Tikhomirov, Serik Eliby, Neil Shirley, Shoba Sivasankar, Scott Tingey, Peter Langridge, Maria Hrmova, Sergiy Lopat

    DREB/CBF expression in wheat and barley using the stress-inducible promoters of HD-Zip I genes: impact on plant development, stress tolerance and yield

    Get PDF
    Networks of transcription factors regulate diverse physiological processes in plants to ensure that plants respond to abiotic stresses rapidly and efficiently. In this study, expression of two DREB/CBF genes, TaDREB3 and TaCBF5L, was modulated in transgenic wheat and barley, by using stress‐responsive promoters HDZI‐3 and HDZI‐4. The promoters were derived from the durum wheat genes encoding the γ‐clade TFs of the HD‐Zip class I subfamily. The activities of tested promoters were induced by drought and cold in leaves of both transgenic species. Differences in sensitivity of promoters to drought strength were dependent on drought tolerance levels of cultivars used for generation of transgenic lines. Expression of the DREB/CBF genes under both promoters improved drought and frost tolerance of transgenic barley, and frost tolerance of transgenic wheat seedlings. Expression levels of the putative TaCBF5L downstream genes in leaves of transgenic wheat seedlings were up‐regulated under severe drought, and up‐ or down‐regulated under frost, compared to those of control seedlings. The application of TaCBF5L driven by the HDZI‐4 promoter led to the significant increase of the grain yield of transgenic wheat, compared to that of the control wild‐type plants, when severe drought was applied during flowering; although no yield improvements were observed when plants grew under well‐watered conditions or moderate drought. Our findings suggest that the studied HDZI promoters combined with the DREB/CBF factors could be used in transgenic cereal plants for improvement of abiotic stress tolerance, and the reduction of negative influence of transgenes on plant development and grain yields
    corecore