2,842 research outputs found
Tropospheric sulfate distribution during SUCCESS: Contributions from jet exhaust and surface sources
The distribution of SO4= aerosol over the central US during SUCCESS indicates that surface sources of SO4= and SO2 in the western US caused SO4= enhancements up to 10 km altitude. The mean (median) SO4= mixing ratio in the mid- and upper-troposphere increased from 24 (16) pptv over the Pacific ocean to 58 (29) pptv over the central plains. Above 10 km the SO4=mixing ratio was essentially the same in both regions, and also when the geographic classifications were further partitioned into upper tropospheric and lower stratospheric categories (mean near 40 pptv). No obvious enhancements of SO4= could be detected in jet exhaust plumes, but this may reflect the difficulty of keeping a large airborne sampling platform within a turbulent wake for time periods longer than a few seconds. Expected SO4=enhancements (based on observed CO2 enhancements and emission factors for these two species) were generally much smaller than the variability of ambient SO4= mixing ratios, so our null result does not mean that aircraft do not emit H2SO4
Influence of vertical transport on free tropospheric aerosols over the central USA in springtime
Measurements of the atmospheric aerosol chemical composition during the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) indicate substantial vertical transport of boundary layer aerosol to the free troposphere over the south-central United States during springtime. Mixing ratios of water-soluble aerosol Ca 2+ at 6 - 12 km altitude exhibited a median mixing ratio of 20 pptv, with 15% of the measurements \u3e 100 pptv and a maximum of ! 235 pptv. In air parcels with enhanced Ca 2+, the ratios K+/Ca 2+, Mg2+/Ca 2+, and Na+/Ca 2+ in the bulk aerosol were distinctly characteristic of those in limestone and/or cement. Significantly enhanced mixing ratios of aerosol SO42-, NO3-, and NH4 + were also concomitant with the elevated Ca 2+, suggesting transport of both crustal and anthropogenic aerosols to the upper troposphere. The mass concentration of water-soluble aerosol material was in the range 0.1 - 6 pg m -3 STP, and estimated crustal dust levels were 7 - 160 pg m \u273 ST
Latitudinal variation of freeze tolerance in intertidal marine snails of the genus melampus (Gastropoda: Ellobiidae)
Low temperatures limit the poleward distribution of many species such that the expansion of geographic range can only be accomplished via evolutionary innovation. We have tested for physiological differences among closely related species to determine whether their poleward latitudinal ranges are limited by tolerance to cold. We measured lower temperature tolerance (LT50) among a group of intertidal pulmonate snails from six congeneric species and nine locales. Differences in tolerance are placed in the context of a molecular phylogeny based on one mitochondrial (cytochrome oxidase subunit I) and two nuclear (histone 3 and a mitochondrial phosphate carrier protein) markers. Temperate species from two separate lineages had significantly lower measures of LT50 than related tropical species. Range differences within the temperate zone, however, were not explained by LT50. These results show that multiple adaptations to cold and freezing may have enabled range expansions out of the tropics in Melampus. However, northern range limits within temperate species are not governed by cold tolerance alone. © 2014 by The University of Chicago. All rights reserved
A Randomized Controlled Trial of the Concrete Biosand Filter and its Impact on Diarrheal Disease in Bonao, Dominican Republic.
A number of household water treatment and safe storage technologies, such as chlorine disinfection, solar disinfection, and ceramic filtration, have been documented for their ability to reduce diarrheal disease and improve microbial water quality. The biosand filter (BSF) is a promising household water treatment technology in use by \u3e 500,000 people globally. The purpose of this research was to document the ability of BSFs to improve water quality and to reduce diarrheal disease in user compared with non-user households in a randomized controlled trial in Bonao, Dominican Republic, during 2005–2006. During the 6-month intervention period, 75 BSF households had significantly improved drinking water quality on average compared with 79 control households ( P \u3c 0.001). Based on random intercepts logistic regression, BSF households had 0.53 times the odds of diarrheal disease as control households, indicating a significant protective effect of the BSF against waterborne diarrheal diseas
Enhancing e-Infrastructures with Advanced Technical Computing: Parallel MATLAB® on the Grid
MATLAB® is widely used within the engineering and scientific fields as the language and environment for technical computing, while collaborative Grid computing on e-Infrastructures is used by scientific communities to deliver a faster time to solution. MATLAB allows users to express parallelism in their applications, and then execute code on multiprocessor environments such as large-scale e-Infrastructures. This paper demonstrates the integration of MATLAB and Grid technology with a representative implementation that uses gLite middleware to run parallel programs. Experimental results highlight the increases in productivity and performance that users obtain with MATLAB parallel computing on Grids
Coupled Oscillators with Chemotaxis
A simple coupled oscillator system with chemotaxis is introduced to study
morphogenesis of cellular slime molds. The model successfuly explains the
migration of pseudoplasmodium which has been experimentally predicted to be
lead by cells with higher intrinsic frequencies. Results obtained predict that
its velocity attains its maximum value in the interface region between total
locking and partial locking and also suggest possible roles played by partial
synchrony during multicellular development.Comment: 4 pages, 5 figures, latex using jpsj.sty and epsf.sty, to appear in
J. Phys. Soc. Jpn. 67 (1998
Shock formation and the ideal shape of ramp compression waves
We derive expressions for shock formation based on the local curvature of the
flow characteristics during dynamic compression. Given a specific ramp adiabat,
calculated for instance from the equation of state for a substance, the ideal
nonlinear shape for an applied ramp loading history can be determined. We
discuss the region affected by lateral release, which can be presented in
compact form for the ideal loading history. Example calculations are given for
representative metals and plastic ablators. Continuum dynamics (hydrocode)
simulations were in good agreement with the algebraic forms. Example
applications are presented for several classes of laser-loading experiment,
identifying conditions where shocks are desired but not formed, and where long
duration ramps are desired
Proportion Regulation in Globally Coupled Nonlinear Systems
As a model of proportion regulation in differentiation process of biological
system, globally coupled activator-inhibitor systems are studied. Formation and
destabilization of one and two cluster state are predicted analytically.
Numerical simulations show that the proportion of units of clusters is chosen
within a finite range and it is selected depend on the initial condition.Comment: 11 pages (revtex format) and 5 figures (PostScript)
Self-organized Vortex State in Two-dimensional Dictyostelium Dynamics
We present results of experiments on the dynamics of Dictyostelium discoideum
in a novel set-up which constraints cell motion to a plane. After aggregation,
the amoebae collect into round ''pancake" structures in which the cells rotate
around the center of the pancake. This vortex state persists for many hours and
we have explicitly verified that the motion is not due to rotating waves of
cAMP. To provide an alternative mechanism for the self-organization of the
Dictyostelium cells, we have developed a new model of the dynamics of
self-propelled deformable objects. In this model, we show that cohesive energy
between the cells, together with a coupling between the self-generated
propulsive force and the cell's configuration produces a self-organized vortex
state. The angular velocity profiles of the experiment and of the model are
qualitatively similar. The mechanism for self-organization reported here can
possibly explain similar vortex states in other biological systems.Comment: submitted to PRL; revised version dated 3/8/9
- …