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Abstract 
 
MATLAB® is widely used within the engineering and scientific fields as the 
language and environment for technical computing, while collaborative Grid 
computing on e-Infrastructures is used by scientific communities to deliver a faster 
time to solution. MATLAB allows users to express parallelism in their applications, 
and then execute code on multiprocessor environments such as large-scale e-
Infrastructures. This paper demonstrates the integration of MATLAB and Grid 
technology with a representative implementation that uses gLite middleware to run 
parallel programs. Experimental results highlight the increases in productivity and 
performance that users obtain with MATLAB parallel computing on Grids. 
 
 
 
I. Introduction 
 
a) MATLAB and Parallel Computing 
 
MATLAB [11] is a high-level technical computing language and interactive environment 
for algorithm development, data visualization, data analysis, and numeric computation. 
MATLAB is used to solve problems in several application areas such as signal and image 
processing, communications, control design, test and measurement, financial modeling 
and analysis, and computational biology. Add-on toolboxes extend the MATLAB 
environment to solve particular classes of problems in different application areas.  
 
Simulink® [12] is a companion product to MATLAB that offers an environment for 
multidomain simulation and Model-Based Design for dynamic and embedded systems. It 
provides an interactive graphical environment and a customizable set of block libraries 
that allows users to design, simulate, implement, and test a variety of time-varying 
systems. 
 



MATLAB, Simulink and add-on products provide engineers, scientists, mathematicians, 
and educators with a powerful set of tools. These tools serve a broad range of tasks across 
a variety of industries from automotive and electronics to finance and 
telecommunications. There are an estimated 1 million MATLAB users in industry and 
academia worldwide. MATLAB has been especially widely adopted by the academic 
field. More than 3,500 universities across the world use MATLAB for research and 
teaching.  
 
Engineers and scientists are solving increasingly complex problems, with running times 
and data sets that far exceed the capabilities of traditional uniprocessor systems. 
Simultaneously, advances in computer processing power have enabled easy access to 
multicore processors as well as clusters built from commercial-off-the-shelf (COTS) 
components. These two factors have driven the demand that MATLAB easily exploit 
multiprocessor architectures. 
 
The MathWorks responded to this demand by beginning to support parallel computing in 
MATLAB. Two products were released in 2004: Distributed Computing Toolbox (since 
renamed to Parallel Computing Toolbox) and MATLAB® Distributed Computing Engine 
(since renamed to MATLAB® Distributed Computing Server) [13,14]. Since then, 
MATLAB and Simulink users have taken advantage of parallel programming and 
execution on multicore desktop computers as well as personal, workgroup, departmental 
and enterprise clusters [16,17,18,19,20]. Section II contains a detailed description of 
parallel MATLAB technology and products. 
 
 
b) Grid Computing and EGEE 
 
Modern science is increasingly dependent on ICT technologies, analysing huge amounts 
of data (in the TeraByte and PetaByte range), running large scale simulations requiring 
thousands of CPUs, and sharing results between different research groups. This 
collaborative way of doing science has led to the creation of Virtual Organizations (VOs) 
that combine researches and resources (instruments, computing, data) across traditional 
administrative and organizational domains [1]. Advances in networking and distributed 
computing techniques have enabled the establishment of such VOs and more and more 
scientific disciplines are leveraging VOs to do Grid computing [2,3,4]. 
 
The past years have shown the benefit of basing Grid computing on a well managed 
infrastructure federating the network, storage, and compute resources across different 
institutions and making them available to different scientific communities via well 
defined protocols and interfaces exposed by a software layer (Grid middleware). A 
number of Grid infrastructures have been established in the past years like EGEE [23] 
and DEISA [24] in Europe, OSG [25] and TeraGrid [26] in the US, and APAC [27] and 
NAREGI [28] in the Asia-Pacific. 
 
Among these projects, the EGEE (Enabling Grids for E-sciencE) project unites thematic, 
national and regional Grid initiatives in order to provide an e-Infrastructure available to 



all scientific research in Europe in support of the European Research Area. EGEE has 
also expanded to the Americas and Asia Pacific working towards a world-wide e-
Infrastructure. The project is a multi-phase programme starting in 2004 and expected to 
end in 2010, when the federations will govern the use of the grid and its technology. 
EGEE currently federates some 250 resource centres from 48 countries providing over 
50,000 CPUs and several PetaBytes of storage.  
 
The EGEE infrastructure is being used by over 5000 users forming some 200 VOs and 
running over 140,000 jobs per day. EGEE users come from disciplines as diverse as 
archaeology, astronomy, astrophysics, computational chemistry, earth science, finance, 
fusion, geophysics, high energy physics, life sciences, material sciences, and many more. 
EGEE also works with industrial users and industrial service providers to ensure 
technology transfer to business. [10] provides further details on EGEE’s work with 
business. 
 
 
c) Parallel MATLAB on the Grid 
 
MATLAB and Grid computing are recognized as key enablers of engineering and 
scientific activity. The integration of these technologies is a natural demand of the 
scientific and industrial community: MATLAB users will be able to solve larger 
problems by running their applications in parallel on collaborative Grids, while Grid 
users will have the ability to develop complex applications in MATLAB. 
 
A requirement for the integration of MATLAB and Grid computing is that a user be able 
to develop a MATLAB application without needing to consider the variety of 
environments within which it might be executed. This paper presents a solution that gives 
a user that capability. The contributions of this paper are 
i) Description of the MATLAB parallel programming paradigm in which the language 

is independent of the execution environment. 
ii) Implementation of a mechanism for the execution of parallel MATLAB programs on 

Grids through gLite middleware. 
iii) Experimental results from the execution of a MATLAB application on an EGEE 

Grid. 
 
 
 
II. Parallel MATLAB 
 
The MATLAB language is well suited to rapid prototyping and development of technical 
computing applications. MATLAB offers the ability to express ideas in a language close 
to mathematical expression, within an interactive development environment. 
Multiplatform support and add-on toolboxes make MATLAB programs portable, and 
easy to write, run and maintain. 
 



Parallel language design for MATLAB draws from Lurie’s annotation-based language 
model [15], in which domain experts make minimal annotations to their high-level code 
to express an intention of using multiple compute resources. Parallelism has been built 
into the MATLAB language through a set of functional constructs and data structures. 
The language is independent of execution environment and resource allocation, which 
enables a user to program a parallel application without making changes to existing code 
or workflows. 
 
a) Programming and Execution 
 
MATLAB and Parallel Computing Toolbox (PCT) provide the development and 
execution environments for parallel applications on a user’s workstation. PCT can launch 
up to 4 MATLAB worker processes (MATLAB computational engines that run 
independently of client sessions) on the workstation, which enables the user to locally test 
and debug a parallel program, as well as to utilize multiple processing cores. MATLAB 
Distributed Computing Server (MDCS) provides the execution environment for 
applications on cluster or Grid computers. Several MATLAB workers can be used to 
execute applications in parallel. 

 

Figure 1: Parallel Programming and Execution 

 
 
b) Parallel Language 
 
MATLAB provides a set of constructs that can be applied to exploit various types of 
parallelism with minimal effort. Users can choose a specific subset of these constructs in 
order to exploit parallelism in their applications. Most MATLAB users will choose high-



level constructs like parallel for loops and distributed arrays, while advanced parallel 
programmers might use low-level message passing functions. 
 
The parallel for loop, parfor, exploits task parallelism. A user expresses that the iterates 
of a for loop are order-independent by annotating the for as a parfor. During program 
execution, the parfor iterates are distributed to be run on available MATLAB workers, 
potentially across multiple physically-separated computers. If no MATLAB workers are 
present, for instance on a single-processor system, parfor behaves like a traditional for 
loop. 
 

% Original for loop 
for itr = m : n 
    % loop body 
End 

% Parallel for loop 
parfor itr = m : n 
    % loop body 
End 

Figure 2: Parallel for loop 

 
MATLAB distributed arrays target data parallelism by implementing the Partitioned 
Global Address Space (PGAS) model across MATLAB workers. In the PGAS model for 
SPMD (Single Program Multiple Data) programs, multiple SPMD threads or processes 
share a part of their address space. By using MATLAB distributed arrays, users can 
allocate matrices across the available MATLAB workers and work with very large data 
sets. MATLAB operations like matrix multiplication, decomposition, and transforms also 
work directly on distributed arrays. Some of these operations leverage ScaLAPACK. 
 
An increasing number of add-on products to MATLAB, such as Optimization Toolbox™ 
[29], Genetic Algorithm and Direct Search Toolbox™ [30], and SystemTest® [31], 
contain built-in support for parallel computing. Users of these tools can take advantage of 
multiprocessor resources without writing a single line of parallel code. 
 
Parallel computing experts have the option of using low-level functionality to exercise 
greater control over their applications: batch jobs that contain dependent or independent 
tasks; MATLAB message passing functions that are wrappers around commonly-used 
MPI (MPICH2) operations. 
 
 
c) Interactive Development 
 
Interactivity makes MATLAB a uniquely simple environment to understand and use. 
Prototyping and algorithm development occur in a simple, iterative fashion from a 
command line, leading to the creation of an application in the form of MATLAB files. 
This experience is also available to developers of parallel code. It is particularly useful 
for programmers to test and debug programs on their workstations before submitting any 
batch jobs. matlabpool command and Parallel Command Window allow a user to open an 
interactive session to a selection of MATLAB workers. The user can test and profile 
code, explore distributed data and detect deadlocks. Batch jobs can be submitted only 
after the user is confident of the correctness and performance of the parallel application. 
 



 
d) Selection of Execution Environment 
 
The separation of language from execution environment allows a parallel MATLAB 
program to run correctly and scale up to whatever computing resources are made 
available to it. The location and nature of the computing resources are saved in a 
Distributed Configuration. A user or administrator can create Configurations for a variety 
of systems, e.g., a multicore workstation, a workgroup cluster, or a large-scale Grid 
system. By selecting one of the Configurations, the user defines the resources on which 
the parallel MATLAB program will be executed, without modifying any code. 
 
 
 
III. EGEE 
 
The computing and storage resources EGEE integrates are provided by a large and 
growing number of Resource Centres (RCs), mostly in Europe but also in the Americas 
and Asia Pacific. The EGEE infrastructure is federating resources and making them 
easily accessible but does not own the resources itself. Instead, the resources accessible 
belong to independent resource centres that procure their resources and allow access to 
them based on their particular funding schemes and policies. Federating the resources 
through EGEE allows the resource centres to offer seamless, homogenous access 
mechanisms to their users as well as to support a variety of application domains through 
the EGEE VOs. Hence, EGEE on its own cannot take any decision on how to assign 
resources to VOs and applications. EGEE merely provides a market place where resource 
providers and potential users negotiate the terms of usage on their own. EGEE provides a 
continuous service to its users through its RCs that are managed via Regional Operations 
Centres (ROCs) taking over the responsibility of managing the RCs in their region. 
Regions are defined geographically and include up to 8 countries. This setup allows 
adjusting the operational procedures to local peculiarities like legal constraints, 
languages, best practices etc. In addition, the Global Grid User Support (GGUS) system 
is used throughout the infrastructure as central entry point for managing problem reports 
and tickets, for operations, as well as for user, VO, and application support.   
 
EGEE deploys the gLite middleware [5], a middleware distribution that combines 
components developed in various related projects, in particular Condor [6], the Globus 
Toolkit (GT) [7], LCG [8], and VDT [9], complemented by EGEE developed services. 
This middleware provides the user with high level services for scheduling and running 
computational jobs, accessing and moving data, and obtaining information on the Grid 
infrastructure as well as Grid applications, all embedded into a consistent security 
framework.  
 
EGEE actively engages with application communities, beginning with High Energy 
Physics (HEP) and Biomedicine at the start of EGEE but expanding to support many 
other domains. These include Astronomy, Computational Chemistry, Earth Sciences, 
Financial simulations, Fusion science and Geophysics, with many other applications 



currently evaluating the infrastructure. EGEE also works with industrial users and 
industrial service providers to ensure technology transfer to business. Further details on 
EGEE’s work with business can be found at [10]. 
 
The applications running on the EGEE Grid are rapidly moving from testing to routine 
usage, with some communities already running large numbers of jobs on a daily basis. 
Overall, the infrastructure serves some 140,000 jobs per day. The figure below shows the 
development of the usage of the infrastructure, normalized to kilo SpecInt200. There has 
been a steady increase in usage and although the High Energy Physics domain is still the 
dominant user responsible for some 2/3 of the resource consumption, the usage by other 
domains is steadily increasing and now equivalent to the total HEP usage a year ago. 
EGEE allows user groups to federate their distributed resources into a seamlessly 
accessible infrastructure thus optimizing their usage; at the same time, resource centres 
supporting multiple disciplines can offer their services to all the supported disciplines via 
a common interface provided by EGEE. [3] provides an overview on applications using 
EGEE.  
 

 
Figure 3: Usage of the EGEE resources 

 
 
 
IV. Parallel Execution of MATLAB on the Grid 
 
A MATLAB user parallelizes an application by using high-level language constructs like 
parfor or low-level message-passing functions. The user does not need to write any 
special code to account for the fact that the application will be run on a Grid. Executing 
the application on a Grid system typically involves the following steps.  

i) The user selects a “local” Distributed Configuration and tests the parallel program 
with local MATLAB workers on a workstation. 

ii) Once the program runs successfully, the user selects a Configuration for the Grid 
system and runs the program again. This time, with no intervention or direction 
from the user, MATLAB will transfer input data and code to the Grid, execute the 
parallel code on MATLAB workers, and retrieve output data. 

 
a) MATLAB integration with gLite 
 
gLite middleware provides the user with high level services for scheduling and running 
computational jobs. In order to launch and control gLite jobs, a user requires a remote 
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command execution and file copying mechanism between workstation and Grid. This can 
be done by installing gLite client tools, using https, or setting up passwordless ssh 
between workstation and remote Grid UI node.  
 
When a user runs a parallel application, MATLAB automatically generates Job 
Definition Language files and other gLite-specific scripts, copies input files to a Storage 
Element (SE) and registers the files with a File Catalog. Submission commands are then 
called to submit gLite jobs. The user can continue to use MATLAB to do other work 
while the jobs run on the Grid. 
 
The Resource Broker of the gLite middleware locates sites that have MDCS installations. 
MATLAB workers are started up on Worker Nodes and the application is executed in 
parallel. Output data is written to the SE. 
 
The MATLAB session on the user’s workstation automatically runs a timer that 
periodically check the state of the gLite jobs. When a gLite job finishes, its output data 
and files are copied from the SE to the workstation. The user then retrieves the output of 
the parallel MATLAB application and destroys the job. The destruction of the MATLAB 
job includes the deletion of files that are no longer needed on the SE. 
 
 
 
V. Experiments  
 
a) Parameter Sweep Application 
 
A MATLAB application from the field of systems biology was chosen for experimental 
runs. The application was created using SimBiology® [21], which extends MATLAB® 
with tools for modeling, simulating, and analyzing biochemical pathways. 
 
The application allows a user to hypothesize and simulate the effects of drug interactions 
with a model of Caspase-induced apoptosis (programmed cell death) [22]. A parameter 
sweep is performed across a range of drug-injection rates to quantify the effect of the 
drug dosage on the Caspase3 activation levels. Several hundred thousand simulations 
might need to be performed, requiring several days of computation on one MATLAB. 
 
 
b) Experimental Setup 
 
MATLAB and PCT were installed on a dual-core 1.83 GHz T60 Windows laptop with 
2GB RAM. The laptop was located at The MathWorks headquarters in Natick, USA. 
 
MDCS was installed on a cluster at Laboratoire de l'Accélérator Linéaire (LAL) in Orsay, 
France. The cluster contained 33 IBM rack-mounted servers, out of which 8 were used 
for the experiments. Every server had 2 CPUs (Intel Woodcrest 2.3 GHz), each with 4 
cores, as well as 16 GB of RAM and a 160 GB hard disk. The batch system used on the 



cluster was Torque 2.1.9, with a Maui 3.2.6 scheduler. A standard gLite 3.1 configuration 
was used for the cluster. One of the rack-mounted servers acted as the Grid interface 
node. 
 
Remote command execution and data transfer between the workstation and the Grid 
interface node was done using SSH and a PuTTY client. Once passwordless SSH login 
was established, MATLAB would call plink to execute remote commands and pscp to 
transfer data. 
 
 
c) Measurements 
 
The size of the problem being solved by the chosen parallel MATLAB application was 
determined by the number of simulations that it ran. The performance of the application 
on the EGEE Grid was measured by varying the problem size with the number of 
MATLAB workers such that the load per worker was maintained as a constant.  
 
The total running time of the application was measured on the user’s workstation. 
Therefore, in addition to the time spent on MATLAB simulations, this value also 
included the overhead of job submissions to gLite, of data transfers between workstation 
and Grid, and of the Resource Broker scheduling the application on Grid resources. As 
presented in Table 1 below, the application was run on different numbers of workers 
while maintaining the number of simulations executed by each worker at 11500. Speedup 
ratio is the ratio of the running time of 11500 simulations on one worker to the running 
time of 11500* p simulations on p workers.  
 

Number of 
Simulations 
(Problem Size) 

Number of 
MATLAB  
workers 

Running Time 
in seconds 

Simulations 
per second 

Speedup 
Ratio 

11500 1 3854 2.98 1.00 
23000 2 3885 5.92 0.99 
46000 4 4000 11.50 0.96 
92000 8 4207 21.87 0.92 
184000 16 4428 41.55 0.87 
368000 32 4974 73.98 0.77 
736000 64 5960 123.49 0.65 

Table 1: Parallel Performance for Scaled Problem Size 

 
Figure 4 shows that the rate at which simulations are performed by the MATLAB 
application increases with the number of MATLAB workers that are executing the 
simulations in parallel. The figure also indicates that the overhead to distributing an 
application increases with an increase in the number of resources over which the 
distribution is performed. A significant amount of the overhead is due to the fact that data 
is transferred between remote sites in the US and France for each job that is submitted to 
gLite. 
 



The experimental results illustrate that a MATLAB user can obtain very significant 
increases in productivity by running parallel programs on e-Infrastructures. 64 MATLAB 
workers take 100 minutes to run 736000 simulations while a single MATLAB would take 
close to 3 days to solve the same problem. Parallel MATLAB on the Grid directly 
accelerates the pace of engineering and scientific endeavor by allowing users to rapidly 
test, iterate and arrive at solutions. 

 
Figure 4: Simulations per second for Scaled Problem Size 

 
 
 
VI. Conclusion 
 
This paper describes the integration of MATLAB and Grid technology, and the use of 
large-scale e-Infrastructures like EGEE to run parallel MATLAB applications. Language 
features and constructs within MATLAB enable users to interactively develop parallel 
programs, either by annotating existing sequential code or by authoring new parallel 
code. The programs are independent of their execution environment which makes them 
well-suited to be run within a Grid system where heterogeneous computational resources 
are allocated based on current availability. 
 
The mechanisms of MATLAB integration with gLite Grid middleware have been 
implemented and explained in this paper. Experimental results from running a MATLAB 
application on an EGEE system have also been presented. The results illustrate that users 
can substantially improve their productivity by running parallel MATLAB programs on 



Grids. The integration of these two technologies brings the benefits of high-productivity 
computing to a large community of engineers and scientists. 
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