273 research outputs found

    Disruption of asxl1 results in myeloproliferative neoplasms in zebrafish

    Get PDF
    Somatic loss-of-function mutations of the additional sex combs-like transcriptional regulator 1 (ASXL1) gene are common genetic abnormalities in human myeloid malignancies and induce clonal expansion of mutated hematopoietic stem cells (HSCs). To understand how ASXL1 disruption leads to myeloid cell transformation, we generated asxl1 haploinsufficient and null zebrafish lines using genome-editing technology. Here, we show that homozygous loss of asxl1 leads to apoptosis of newly formed HSCs. Apoptosis occurred via the mitochondrial apoptotic pathway mediated by upregulation of bim and bid Half of the asxl1+/ - zebrafish had myeloproliferative neoplasms (MPNs) by 5 months of age. Heterozygous loss of asxl1 combined with heterozygous loss of tet2 led to a more penetrant MPN phenotype, while heterozygous loss of asxl1 combined with complete loss of tet2 led to acute myeloid leukemia (AML). These findings support the use of asxl1+/ - zebrafish as a strategy to identify small-molecule drugs to suppress the growth of asxl1 mutant but not wild-type HSCs in individuals with somatically acquired inactivating mutations of ASXL1

    BRCA1: linking HOX to breast cancer suppression

    Get PDF
    Homeobox (HOX) genes play key roles in embryogenesis and tissue differentiation. Recently, a number of groups have reported altered HOX gene expression in breast cancer. However, the mechanism of HOX gene regulation and the search for direct targets of its transcriptional regulatory function have been minimally fruitful. Recently, Gilbert and colleagues reported that HOXA9 restrains breast cancer progression by upregulation of BRCA1, a tumor suppressor. This finding raises our hope that more, rather elusive targets of HOX genes important in tumor progression or suppression will be found in the future

    Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Get PDF
    Background: Neuroblastoma (NB) tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods: Thirty-five NB tumours from patients diagnosed at < 18 months (25 stage 4 and 10 stage 4s), were evaluated by allelic and gene expression analyses. Results: All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36), 23% 11q and/or 14q LOH (27%) and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 < 12 months tumours revealed distinct gene expression profiles. A significant portion of genes mapped to chromosome 1 (P < 0.0001), 90% with higher expression in stage 4s, and chromosome 11 (P = 0.0054), 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 < 18m, yet, association with chromosomes 1 (P < 0.0001) and 11 (P = 0.005) was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 < 18 months without MYCN amplification. Conclusion: Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour

    MEIS2 Is an Adrenergic Core Regulatory Transcription Factor Involved in Early Initiation of TH-MYCN-Driven Neuroblastoma Formation.

    Full text link
    Roughly half of all high-risk neuroblastoma patients present with MYCN amplification. The molecular consequences of MYCN overexpression in this aggressive pediatric tumor have been studied for decades, but thus far, our understanding of the early initiating steps of MYCN-driven tumor formation is still enigmatic. We performed a detailed transcriptome landscaping during murine TH-MYCN-driven neuroblastoma tumor formation at different time points. The neuroblastoma dependency factor MEIS2, together with ASCL1, was identified as a candidate tumor-initiating factor and shown to be a novel core regulatory circuit member in adrenergic neuroblastomas. Of further interest, we found a KEOPS complex member (gm6890), implicated in homologous double-strand break repair and telomere maintenance, to be strongly upregulated during tumor formation, as well as the checkpoint adaptor Claspin (CLSPN) and three chromosome 17q loci CBX2, GJC1 and LIMD2. Finally, cross-species master regulator analysis identified FOXM1, together with additional hubs controlling transcriptome profiles of MYCN-driven neuroblastoma. In conclusion, time-resolved transcriptome analysis of early hyperplastic lesions and full-blown MYCN-driven neuroblastomas yielded novel components implicated in both tumor initiation and maintenance, providing putative novel drug targets for MYCN-driven neuroblastoma

    Arsenic trioxide exerts synergistic effects with cisplatin on non-small cell lung cancer cells via apoptosis induction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite multidisciplinary treatment, lung cancer remains a highly lethal disease due to poor response to chemotherapy. The identification of therapeutic agents with synergistic effects with traditional drugs is an alternative for lung cancer therapy. In this study, the synergistic effects of arsenic trioxide (As<sub>2</sub>O<sub>3</sub>) with cisplatin (DDP) on A549 and H460 non-small cell lung cancer (NSCLC) cells were explored.</p> <p>Methods</p> <p>A549 and H460 human lung cancer cells were treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. Cell growth curves, cell proliferation, cell cycle, and apoptosis of human cancer cell lines were determined by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) method, clonogenic assay, and flow cytometry (FCM). Apoptosis was further assessed by TUNEL staining. Cell cycle and apoptosis related protein p21, cyclin D1, Bcl-2, bax, clusterin, and caspase-3 were detected by western blot.</p> <p>Results</p> <p>MTT and clonogenic assay showed As<sub>2</sub>O<sub>3 </sub>within 10<sup>-2 </sup>μM to 10 μM exerted inhibition on the proliferation of NSCLC cells, and 2.5 μM As<sub>2</sub>O<sub>3 </sub>exerted synergistic inhibition on proliferation with 3 μg/ml DDP. The combination indices (CI) for A549 and H460 were 0.5 and 0.6, respectively, as confirmed by the synergism of As<sub>2</sub>O<sub>3 </sub>with DDP. FCM showed As<sub>2</sub>O<sub>3 </sub>did not affect the cell cycle. The G0/G1 fraction ranged from 57% to 62% for controlled A549 cells and cells treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. The G0/G1 fraction ranged from 37% to 42% for controlled H460 cells and cells treated with As<sub>2</sub>O<sub>3 </sub>and/or DDP. FCM and TUNEL staining illustrated that the combination of As<sub>2</sub>O<sub>3 </sub>and DDP provoked synergistic effects on apoptosis induction based on the analysis of the apoptosis index. Western blotting revealed that the expression of cell cycle related protein p21 and cyclin D1 were not affected by the treatments, whereas apoptosis related protein bax, Bcl-2, and clusterin were significantly regulated by As<sub>2</sub>O<sub>3 </sub>and/or DDP treatments compared with controls. The expression of caspase-3 in cells treated with the combination of As<sub>2</sub>O<sub>3 </sub>and DDP did not differ from that in cells treated with a single agent.</p> <p>Conclusion</p> <p>As<sub>2</sub>O<sub>3 </sub>exerted synergistic effects with DDP on NSCLC cells, and the synergistic effects were partly due to the induction of caspase-independent apoptosis.</p

    Endometrial stromal sarcoma with selective polyvinyl alcohol embolization of a pulmonary metastasis after recurrent hemoptysis and expansive growth

    Get PDF
    A 63-year-old female with a well-vascularized pulmonary metastasis of an endometrial stromal sarcoma (ESS) of 6×6 cm received selective embolization with 150–250 μm polyvinyl alcohol (Contour; Boston Scientific, Natick, MA, USA) via a bronchial artery. Post-interventional loss of perfusion was qualitatively estimated to be >80%. The lesion was located in direct proximity to the pulmonary hilar vessels. Owing to recurrent and sudden hemoptyses, an interdisciplinary tumor board assessed the risk of life-threatening blood loss to be greater than that of angiography with particle embolization and agreed on an endovascular approach. Hemoptysis did not recur in a follow-up period of six months. Initial clinical symptoms were noted 25 years ago. However, establishing a definite diagnosis has, for a long time, remained a histopathological challenge

    Genome-Wide Analysis of Neuroblastomas using High-Density Single Nucleotide Polymorphism Arrays

    Get PDF
    BACKGROUND: Neuroblastomas are characterized by chromosomal alterations with biological and clinical significance. We analyzed paired blood and primary tumor samples from 22 children with high-risk neuroblastoma for loss of heterozygosity (LOH) and DNA copy number change using the Affymetrix 10K single nucleotide polymorphism (SNP) array. FINDINGS: Multiple areas of LOH and copy number gain were seen. The most commonly observed area of LOH was on chromosome arm 11q (15/22 samples; 68%). Chromosome 11q LOH was highly associated with occurrence of chromosome 3p LOH: 9 of the 15 samples with 11q LOH had concomitant 3p LOH (P = 0.016). Chromosome 1p LOH was seen in one-third of cases. LOH events on chromosomes 11q and 1p were generally accompanied by copy number loss, indicating hemizygous deletion within these regions. The one exception was on chromosome 11p, where LOH in all four cases was accompanied by normal copy number or diploidy, implying uniparental disomy. Gain of copy number was most frequently observed on chromosome arm 17q (21/22 samples; 95%) and was associated with allelic imbalance in six samples. Amplification of MYCN was also noted, and also amplification of a second gene, ALK, in a single case. CONCLUSIONS: This analysis demonstrates the power of SNP arrays for high-resolution determination of LOH and DNA copy number change in neuroblastoma, a tumor in which specific allelic changes drive clinical outcome and selection of therapy

    Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci

    Get PDF
    Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma
    corecore