167 research outputs found

    Synergistic Microbial Consortium for Bioenergy Generation from Complex Natural Energy Sources

    Get PDF
    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1 : 9 (v : v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs

    Oligopolyphenylenevinylene-Conjugated Oligoelectrolyte Membrane Insertion Molecules Selectively Disrupt Cell Envelopes of Gram-Positive Bacteria

    Get PDF
    The modification of microbial membranes to achieve biotechnological strain improvement with exogenous small molecules, such as oligopolyphenylenevinylene-conjugated oligoelectrolyte (OPV-COE) membrane insertion molecules (MIMs), is an emerging biotechnological field. Little is known about the interactions of OPV-COEs with their target, the bacterial envelope. We studied the toxicity of three previously reported OPV-COEs with a selection of Gram-negative and Gram-positive organisms and demonstrated that Gram-positive bacteria are more sensitive to OPV-COEs than Gram-negative bacteria. Transmission electron microscopy demonstrated that these MIMs disrupt microbial membranes and that this occurred to a much greater degree in Gram-positive organisms. We used a number of mutants to probe the nature of MIM interactions with the microbial envelope but were unable to align the membrane perturbation effects of these compounds to previously reported membrane disruption mechanisms of, for example, cationic antimicrobial peptides. Instead, the data support the notion that OPV-COEs disrupt microbial membranes through a suspected interaction with diphosphatidylglycerol (DPG), a major component of Gram-positive membranes. The integrity of model membranes containing elevated amounts of DPG was disrupted to a greater extent by MIMs than those prepared from Escherichia coli total lipid extracts alone

    The multi-facets of sustainable nanotechnology : lessons from a nanosafety symposium

    Get PDF
    An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public's perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology

    Understanding the photoelectrochemical properties of a reduced graphene oxide-WO3 heterojunction photoanode for efficient solar-light-driven overall water splitting

    Get PDF
    WO3-reduced graphene oxide (WO3-RGO) heterojunction electrodes were prepared for photoelectrochemical (PEC) overall water splitting. The WO3 photoanode incorporated with RGO showed significantly enhanced PEC properties and, hence, photocatalytic water splitting, compared to the bare WO3 at a bias larger than 0.7 V vs. Ag/AgCl, while a decrease in the PEC properties of WO3-RGO compared to the WO3 electrode was observed at a bias smaller than 0.7 V vs. Ag/AgCl. RGO could play a favorable role in enhancing the electron-hole separation due to the presence of interface states according to the Bardeen model, but it could also provide active sites for the electron-hole recombination. A more positive applied bias is in favor of effective electron-hole separation, by means of quick collection and transport of electrons by RGO. As a result, a higher PEC performance of WO3-RGO can only be realised at a relatively more positive bias. This study gives insights into the complex nature of a RGO-semiconductor heterojunction, and its implications on the overall photoconversion efficiency

    IAEA Contribution to Nanosized Targeted Radiopharmaceuticals for Drug Delivery

    Get PDF
    The rapidly growing interest in the application of nanoscience in the future design of radiopharmaceuticals and the development of nanosized radiopharmaceuticals in the late 2000 ' s, resulted in the creation of a Coordinated Research Project (CRP) by the International Atomic Energy Agency (IAEA) in 2014. This CRP entitled 'Nanosized delivery systems for radiopharmaceuticals' involved a team of expert scientist from various member states. This team of scientists worked on a number of cutting-edge areas of nanoscience with a focus on developing well-defined, highly effective and site-specific delivery systems of radiopharmaceuticals. Specifically, focus areas of various teams of scientists comprised of the development of nanoparticles (NPs) based on metals, polymers, and gels, and their conjugation/encapsulation or decoration with various tumor avid ligands such as peptides, folates, and small molecule phytochemicals. The research and development efforts also comprised of developing optimum radiolabeling methods of various nano vectors using diagnostic and therapeutic radionuclides including Tc-99m, Ga-68, Lu-177 and Au-198. Concerted efforts of teams of scientists within this CRP has resulted in the development of various protocols and guidelines on delivery systems of nanoradiopharmaceuticals, training of numerous graduate students/post-doctoral fellows and publications in peer reviewed journals while establishing numerous productive scientific networks in various participating member states. Some of the innovative nanoconstructs were chosen for further preclinical applications-all aimed at ultimate clinical translation for treating human cancer patients. This review article summarizes outcomes of this major international scientific endeavor

    Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film

    Get PDF
    A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti precursors and organic solvents. The N-doped titania films were prepared from heating aqueous peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure glass substrates were superhydrophilic after being heated at 500 degrees C for 1 h. Nitrogen concentrations in the titania films were adjusted by changing the amount of ammonia solution. The optimal photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial self-cleaning glass under the same visible light illumination. The current reported preparative technique is generally applicable for the preparation of other thin films.Nanyang Technological University [1 RG29/07

    Effect of electron beam radiation on the degradation of biopolymers

    No full text
    The study of the effects of electron beam (e-beam) radiation on PLGA and PLLA and their subsequent hydrolytic degradation characteristics were reported in this thesis.DOCTOR OF PHILOSOPHY (SME

    Targeted gastrointestinal delivery of nutraceuticals with polysaccharide-based coatings

    No full text
    Oral delivery is one of the facile methods for the administration of active ingredients (AI) like nutraceuticals and drugs. However, its intrinsic disadvantages include poor absorption and bioavailability, degradation of the AI during transit through the gastro-intestinal tract (GIT), and a lack of action specificity. Hence, a delivery system for targeted gastro-intestinal delivery of AI using polysaccharide-based polymers, that are generally recognized as safe (GRAS) and approved for use as a direct food additive, is proposed. In this regard, muco-adhesive chitosan nanoparticles that could adhere to the mucosa of the GIT are fabricated, and encapsulated with AI. These particles are subsequently coated with polysaccharides that have different enzymatic susceptibilities, to allow for specific degradation in the small or large intestines. It is observed that the polysaccharide coating efficiently retarded the non-specific release of the encapsulated agent until it is exposed to its intended environment of release. The cytotoxicity and uptake of chitosan nanoparticles is further evaluated on Caco2 cells. In conclusion, these polysaccharide-coated nanoparticles can potentially be targeted to different organs in the GIT and to be taken up by the enterocytes for improved oral bioavailability.Ministry of Education (MOE)Accepted versionThe authors would like to acknowledge the financial support from the Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330001.C70), the School of Materials Science and Engineering (M020070110), the NTU-National Healthcare Group (NTU-NHG) grant (ARG/14012), the Ministry of Education Tier 1 grant (RG11/16), and the NTU-HSPH 17002 grant

    FROM PLASTICS TO ADVANCED POLYMER IMPLANTS: THE ESSENTIALS OF POLYMER CHEMISTRY

    No full text

    Revolutionizing drug delivery through biodegradable multilayered particles

    No full text
    Modern drug discovery technologies are discovering more and more potent therapeutic agents with narrow therapeutic windows, thus necessitating the improvement of current particulate drug delivery systems. Conventional single-layered polymeric particles have limited control over drug release profiles, including burst release, the inability to provide zero-order, pulsatile, time-delayed release and controlled release of multiple drugs. In an attempt to better control drug release kinetics, the development of multilayered microparticles has been introduced. In this review, we give an overview of the fabrication and characterization techniques of multilayered polymeric microparticles. We also focus on the one-step solvent evaporation technique, and the key process parameters in this technique that affect the formation of microparticle configurations. In addition, the benefits and challenges of multilayered microparticulate system for drug delivery were discussed. This review intends to portray how distinctive structural attributes and degradation behaviors of multilayered microparticles can be exploited to fine-tune drug release profiles and kinetics.Accepted versio
    corecore