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A novel and environmental friendly method was developed to prepare transparent, uniform, crack-free

and visible light activated nitrogen doped (N-doped) titania thin films without the use of organic Ti

precursors and organic solvents. The N-doped titania films were prepared from heating aqueous

peroxotitanate thin films deposited uniformly on superhydrophilic uncoated glass substrates. The pure

glass substrates were superhydrophilic after being heated at 500 �C for 1 h. Nitrogen concentrations in

the titania films were adjusted by changing the amount of ammonia solution. The optimal

photocatalytic activity of the N-doped titania films was about 14 times higher than that of a commercial

self-cleaning glass under the same visible light illumination. The current reported preparative technique

is generally applicable for the preparation of other thin films.
Introduction

Titania films on glass slides have potential applications in solar

cells,1 for self-cleaning2 and decontamination applications.3

However, a pure titania film can only be activated under UV

light, which prevents their widespread application. A variety of

methods had been devised to extend the optical absorption range

to the visible light region, by doping with transition metals (Cr,

Fe, Mn, V)4–7 and nonmetal atoms (N, S, C).8–11 N-doped titania

has attracted great interest due to its viable application under

visible light.8

Various methods have been used to prepare N-doped titania

films, such as LP-MOCVD,12 reactive magnetron sputtering,13

AP-CVD,14 radio-frequency (RF) sputtering,15 thermal treat-

ment under an N2 or NH3 atmosphere,16 atomic layer deposi-

tion,17 pulsed laser deposition18 and sol–gel methods,19 etc.

Among all the reported techniques for titania film preparation,

expensive equipment and controlled environment are usually

required. Moreover, these techniques consume a great deal of

energy and are difficult to scale up.20 The sol–gel method is the

most widely used as it presents many advantages such as the use

of very simple equipment and low capital investment, and the

ability to control the microstructure and density of the thin films.

However, the solvent used for coating is mainly organic in

nature, which may potentially be an environmental pollutant.

Also, common sol–gel methods often involve organic titanium
aSchool of Chemical and Biomedical Engineering, Nanyang Technological
University, 62 Nanyang Drive, Singapore 637459. E-mail: tytan@ntu.edu.
sg; Fax: +65-67911761; Tel: +65-63168829
bSchool of Chemical Sciences and Engineering, The University of New
South Wales, Sydney, NSW, 2052, Australia
cDepartment of Chemistry, College of Chemistry and Chemical
Engineering, Xiamen University, Xiamen, 361005, People’s Republic of
China
dSchool of Materials Science and Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798

1122 | Nanoscale, 2010, 2, 1122–1127
compound and organic solvents which are expensive. Organic

titanium compound undergoes strong hydrolysis and hence

forms white precipitates when it comes into contact with atmo-

spheric water. Special equipment that creates a water-free envi-

ronment will therefore be needed in order to prevent such a rapid

hydrolysis reaction.

To avoid these drawbacks, aqueous peroxotitanate solutions

with different viscosities have been employed to prepare titania

films.21–24 Gao et al. prepared a titania film by floating pure glass

on the surface of an aqueous peroxotitanate solution for an

extended period of 12–120 h.22,23 However, the solution became

turbid after soaking for about 15 min and the coating formed was

not uniform and transparent. Some cracks were also observed in

the as-prepared titania film. Ge et al.21 and Yuan et al.24 prepared

titania film by dipping glass slides in aqueous peroxotitanate

solution. However, due to the high surface tension of the water-

based solution, aqueous peroxotitanate solution could not

disperse on the glass uniformly and there were also some cracks

in the titania films. In view of these, it is challenging to form

uniform and transparent titania thin films on smooth glass

substrates without cracks using typical coating techniques such

as dip-coating and spin-coating.

To date, great efforts have been dedicated to prepare super-

hydrophilic films for self-cleaning applications. An aqueous

solution can disperse uniformly on a superhydrophilic surface

and form a uniform thin film. However, the preparation of

a uniform and transparent thin film by exploiting this super-

hydrophilic property has not been reported. In addition, to the

best of our knowledge, there is no report in the open literature on

transparent N-doped titania films prepared by using aqueous

peroxotitanate solution as a Ti source. In this work, we report

a novel method for the preparation of transparent, uniform,

crack-free and visible light activated N-doped titania thin films

by using aqueous peroxotitanate solution (PTA) as precursor

and exploiting the superhydrophilicity of pure glass substrates.

This method is ‘‘green’’ as no organic solvent and organic Ti
This journal is ª The Royal Society of Chemistry 2010
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complex are involved. Since water is a commonly used, stable,

economical and environmental friendly solvent, this synthetic

approach can be easily generalized into a technology for the

preparation of other thin films by exploiting superhydrophilic

substrates and aqueous precursors. We have prepared Bi2WO6

and cation-doped TiO2 thin films using similar strategy and will

communicate our findings in future works.

Experimental details

Reagents

Titanium(IV) chloride (purity > 99%) and ammonia solution

(25%) were purchased from Merck. Hydrogen peroxide (30%)

was purchased from AnalaR. The chemicals were used without

further purification.

Preparation of aqueous peroxotitanate solution (PTA)

The method for preparation of PTA solution was reported

elsewhere.23 In a typical preparation, 3.6 ml of TiCl4 was added

drop-wise into a 300 ml distilled water in an ice-water bath with

strong magnetic stirring. After 30 min, the pH of the solution was

adjusted to 7, 8, 9, 10 and 10.5 by drop-wise addition of diluted

ammonia solution. After stirring for 24 h, the obtained white

precipitates were filtered and washed thoroughly with distilled

water repeatedly until Cl� was not detected. Thereafter the

precipitates were ultrasonic dispersed in 80 ml distilled water.

H2O2 (28 ml) was added drop-wise into this mixture under stir-

ring. The concentration of titania of the resulting transparent

yellow solution was adjusted to 2.0 wt%.

Preparation of N-doped titania films

Glass slides were heated at 500 �C for 1 h, cooled down to room

temperature and used within 0.5 h. Aqeous peroxotitanate

solution was then dip-coated on the freshly heated glass slides.

Finally, the resultant films were heated in air at 500 �C for 1 h.

The N-doped TiO2 films prepared at different pH of 7, 8, 9, 10

and 10.5 were labeled as N–TiO2–7, N–TiO2–8, N–TiO2–9, N–

TiO2–10 and N–TiO2–10.5, respectively. The scheme for the

preparation of N doped titania films from aqueous perox-

otitanate solution is illustrated in Fig. 1.

Characterization

X-Ray diffraction analysis (XRD) was carried out by a Philips

PW1010 X-ray diffractometer with Cu-Ka radiation. An XRD

pattern was recorded with a scan step of 1� min�1 (2q) in the

range from 10� to 70�. X-Ray photoelectron spectroscopy (XPS)

analysis was carried out with a PHI Quantum 2000 Scanning
Fig. 1 Scheme for the preparation of N-doped tita

This journal is ª The Royal Society of Chemistry 2010
ESCA Micro-probe equipment (Physical Electronics, MN, USA)

using monochromatic Al-Ka radiation. The X-ray beam diam-

eter was 100 mm, and the pass energy was 29.35 eV for the

sample. The binding energy was calibrated with respect to C (1s)

at 284.6 eV. Surface morphologies and thicknesses of N-doped

titania films were evaluated by JEOL field emission electron

microscope JSM-6700F. UV-Vis spectra of films were obtained

using a UV-Visible spectrophotometer (Shimadzu). The sessile

drop method was used for contact angle measurements with

a FTA200 Dynamic Contact Angle analyzer.
Photocatalytic tests

For the evaluation of photocatalytic activities of the N-doped

titania films, one 300 W halogen lamp held at 15 cm from the

sample with a 420 nm UV filter (JB420) was used as the visible

light source. The change in the stearic acid layer thickness was

monitored by measuring the infrared absorption spectrum with

a FTIR instrument (Digilab FTS 3100). The absorbance at

2917 cm�1 was converted to a thickness on the basis of an earlier

observation that an absorbance intensity of 0.01 corresponds to

a thickness of 12.5 nm.25 Commercial Pilkington Activ� self-

cleaning glass was used for comparison.
Results and discussion

Hydroxyl group generation in silica glass is a consequence of

reactions of silica glass with thermally loaded molecules, such as

H2O and H2 molecules present in the glass upon heat treatment.26

It was reported that OH groups were formed from reactions of

molecular water diffused into silica glass with the glass network

or network-bound groups.27–29 Nuccio et al. claimed that

intrinsic generation processes of OH groups in synthetic silica

glass also existed, involving reactions between the glass network

and chemical species in the material.26 Yokomachi et al. also

reported that the exposure of silica glass to high temperatures

increased the OH-groups concentration by nearly fourfold due to

weakened hydrogen bonds.30 All these works report an increase

in hydroxyl groups concentration on silica glass after thermal

treatment. The wettability of titania film can be also enhanced

with the increase of absorbed hydroxyl group.31 However, the

contact angles and superhydrophilicity of heat treated silica glass

have not been reported. Fig. 2 shows the contact angle (CA) of

pure glass slide measured within 1 h, after being heated at

different temperatures for 1 h and cooled down to room

temperature. The CA decreased with the increase of heating

temperature, i.e. CA decreased to �2.5� after being heated at

500 �C while the CA of the glass slide heated at 650 �C is almost

0�. The freshly heated glass slides are temporarily super-

hydrophilic even when they are not coated with any materials.
nia films from aqueous peroxotitanate solution.
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Fig. 2 Contact angle of pure glass after being heated at different

temperatures. (Inset: Variation of contact angle of heated glass (500 �C)

with time after being left in ambient conditions). Fig. 3 Images of pure glass substrates (A) without and (B) with heat

treatment after being dipped into PTA aqueous solution; (C) coated with

transparent N–TiO2–10 film on temporary superhydrophilic glass; (D)

coated with N-doped titania film on glass without heat treatment.

Fig. 4 XRD pattern of N-doped titania prepared at different pH

conditions.
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This temporal superhydrophilic property of the heat treated

silica glass slide is attributed to the increase of surface Si–OH

concentration and the decrease of surface contaminant. Fig. 2

(inset) shows the contact angle of the heat treated glass slide after

being left in ambient condition for different durations (h). It can

be seen that CA increased rapidly to 52� after 24 h. Therefore, the

superhydrophilicity of heat-treated pure glass is temporal and

should be used before the CA increases to beyond 5�. This

increase in CA may be due to the decrease of hydroxyl concen-

tration or the absorption of contaminant on the silica glass

surface.

The images of glass slides with and without heat treatment

after being dipped into aqueous peroxotitanate solution followed

by subsequent formation of N-doped titania film are shown in

Fig. 3. Due to the high surface tension of the water-based solu-

tion, aqueous peroxotitanate solution could not disperse

uniformly on the glass substrate. From Fig. 3A, we can see only

certain parts of the glass surface were deposited with perox-

otitanate and droplets were found on the glass surface. This

resulted in non-uniform coating. For the freshly heat treated

glass substrate (Fig. 3B), a thin aqueous peroxotitanate solution

was observed to be coated uniformly on the glass substrate. The

glass substrate appears slightly opaque due to a thin film of

peroxotitanate solution coated on the surface. Fig. 3C and

Figure 3D show the images of N–TiO2–10 film coated on pure

glass with and without heat treatment, respectively. It is obvious

that the titania coating in Fig. 3D is not uniform while the titania

coating in Fig. 3C is uniform, transparent, and a little yellow due

to the doping of N atoms in the titania film.

The crystalline phase and particle size of N-doped titania were

determined by XRD (Fig. 4). The distinctive peaks at 2q¼ 25.3�,

38.0�, 48.1�, 53.8�, 54.8� and 62.8� are attributed to the anatase

titania structure, which indicates that all the N-doped titania thin

films mainly consist of the anatase phase. The crystal sizes of N–

TiO2–7, N–TiO2–8, N–TiO2–9, N–TiO2–10 and N–TiO2–10.5

are approximately 17.0 nm as determined by Scherrer’s equation.

The FTIR spectra of the peroxotitanate, prepared at different

pH conditions, before (Fig. 5a) and after heat treatment (Fig. 5b)

are presented. In Fig. 5a, the absorption bands at 900 cm�1 are
1124 | Nanoscale, 2010, 2, 1122–1127
attributed to the stretching vibrations of the peroxo band (O–

O).24 The wide bands at 3100–3700 cm�1 are attributed to the

vibration of adsorbed water and the bands at 1400 cm�1 are

assigned to the stretching vibrations of the N–H bonds in NH3,

which provides evidence of the presence of NH3 in Ti complex.32

The NH3 in the Ti complex is regarded as a nitrogen source for

the N-doped titania.33,34 Fig. 5b shows the FTIR of perox-

otitanate after calcination. It is obvious that the O–O bands at

900 cm�1 and the N–H bands at 1400 cm�1 disappeared, which

provides evidence of the decomposition of peroxotitanate and

NH3. A new weak peak appears at 1387 cm�1, which is assigned

to hyponitrite.35,36

Sun et al.33 reported that the hydrolysis of TiCl4, with the

addition of ammonia solution, formed a Ti complex with the

formula [Ti(H2O)a(NH3)b(OH)cCld](4�c�d) (where a + b + c + d ¼
6). The Ti complex formed seems to be affected by the presence

of ions such as ammonium, hydroxide and chloride. Similarly,

Cheng et al.37 reported that the hydrolysis of TiCl4 with the
This journal is ª The Royal Society of Chemistry 2010

http://dx.doi.org/10.1039/C0NR00105H


Fig. 5 FTIR spectra of the peroxotitanate coating on glass substrates prepared at different pH values (a) before and (b) after being heated at 500 �C for

1 h (N-doped titania film).

D
ow

nl
oa

de
d 

on
 3

1 
Ja

nu
ar

y 
20

11
Pu

bl
is

he
d 

on
 1

5 
M

ay
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
0N

R
00

10
5H

View Online
addition of KOH solution formed [Ti(OH)nClm]2� complex

(where m + n ¼ 6). The value of m decreased with the increase in

pH and the decrease in [Cl�]. In our case, with increasing pH, the

concentrations of NH3 and OH� increase, which probably led to

the increase of the b and c values, and the decrease of the d value

in the [Ti(H2O)a(NH3)b(OH)cCld](4�c�d) complex. Sun et al. sug-

gested that the NH3 in the Ti complex were close to the Ti atoms,

which might lead to an easy doping process.33 NH3 in the Ti

complex would be decomposed during the crystal transformation

process, which render the N atoms easier to be incorporated into

the titania.34 The doped nitrogen concentration is dependent on

the amount of NH3 in the Ti complex.33 With the increase in pH

and hence NH3 concentration, the concentration of NH3 in the

Ti complex increases and the doping nitrogen concentration

increases.

Fig. 6 shows N 1s XPS spectra for the N-doped titania

samples. The peaks at 400.0 eV are found in all the N-doped

titania films and the intensities increased with the increase of pH

value. The XPS signal at around 400 eV has been a subject of

controversy in the identification of nitrogen species in the study

of N-doped titania. Many reports have suggested that the signal

at 400 eV is attributed to NO species adsorbed on crystallite
Fig. 6 N 1s XPS spectra of N-doped titania films.

This journal is ª The Royal Society of Chemistry 2010
surface.33 Sakthivel et al.35 and Navio et al.36 reported that the

signal at around 400 eV was attributed to the presence of

hyponitrite. Qiu et al. assigned the signal at 400 eV to the

nitrogen incorporated into the titania lattice.34 However, they

unanimously reported that the peak at 400 eV was crucial for

a visible light response. The nitrogen concentrations in the

samples N–TiO2–7, N–TiO2–8, N–TiO2–9, N–TiO2–10 and N–

TiO2–10.5 are determined to be 0.08 at%, 0.20 at%, 0.26 at%,

0.78 at% and 0.96 at%, respectively. The color of the N-doped

titania changes from pale yellow to yellow with the increase of

pH value, which is consistent with the increase of nitrogen

concentration determined by XPS.

The optical absorption spectra of those N-doped titania films

are shown in Fig. 7. All the N-doped titania films exhibit

absorption in the visible light region. The absorption intensity

gradually increased with the increase of pH value due to the

increase of nitrogen doping concentration in titania.

The morphologies of the N–TiO2–10 film were further char-

acterized by FESEM (Fig. 8). Titania films prepared by other

methods20,22,24 using aqueous peroxotitanate solution exhibited
Fig. 7 UV-Visible diffuse reflectance spectra of N-doped titania films

prepared at different pH conditions.

Nanoscale, 2010, 2, 1122–1127 | 1125
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Fig. 8 FESEM images for N–TiO2–10 film (A) at low and (B) high magnifications.
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some cracks. However, no cracks were found in the films

prepared using the current method (Fig. 8a). This is attributed to

uniform coating of peroxotitanate on the superhydrophilic pure

glass with high –OH groups concentration. Fig. 8b shows that

the particle size of N-doped titania is around 17–20 nm, which is

consistent with that obtained from XRD. The morphology of

other N-doped titania films, which are not shown here, were

similar to that of the N–TiO2–10 film.

The photocatalytic activity of the N-doped titania films were

evaluated and compared with a commercial titania self-cleaning

glass by monitoring the degradation of stearic acid under visible

light. Fig. 9a shows the IR spectra of stearic acid on N–TiO2–10

film. The intensity of stearic acid signal decreased significantly

after 24 h of visible light illumination. The photocatalytic
Fig. 9 (a) Evolution of the IR absorbance spectra (N–TiO2–10) under

visible light illumination; (b) Photocatalytic activities of N-doped titania

films prepared at different pH under visible light illumination for 24 h.

1126 | Nanoscale, 2010, 2, 1122–1127
activities of the various thin films under visible light illumination

were evaluated and shown in Fig. 9b. The photoactivities were

evaluated based on the thickness (in nm) of stearic acid degraded

after 24 h of illumination.38 The photocatalytic activities of

N-doped titania films increased with the increase of pH (increase

of ammonia concentration) until pH 10. As suggested in the

preceding paragraph, this could be attributed to the increase of

N-doping concentration, which may lead to an improvement of

visible light photoactivity. The thickness of stearic acid degraded

for the N–TiO2–10 was 11.3 nm, which was 9 times higher than

that of N–TiO2–7 and 14 times higher than that of a commercial

self-cleaning glass. At the highest ammonia concentration (pH ¼
10.5), the thickness of stearic acid degraded decreases to 7.5 nm.

Higher dopant concentrations may lead to greater recombina-

tion rate and lower photocatalytic activity.39
Conclusion

We have developed a ‘‘green’’ method for the preparation of

N-doped titania films by exploiting the superhydrophilicity of

freshly heated pure glass and using organic compound-free PTA

solution as the Ti source. The N-doped titania films were

uniform, transparent and crack-free. All the N-doped titania

films prepared were photocatalytic under visible light illumina-

tion. The photocatalytic activity of N–TiO2–10 was about 14

times higher than that of a commercial self-cleaning glass under

the same visible light illumination. In addition, this method can

be developed into a general coating technology for the prepa-

ration of other types of thin films which involves aqueous solu-

tions and superhydrophilic surfaces.
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