6,155 research outputs found

    Skills Obsolescence: Causes and Cures

    Get PDF
    Until now there has been surprisingly little research on the causes of and the remedies for skills obsolescence. This study tries to fill that gap to some extent by analysing the relation between risk factors and skills obsolescence. Moreover, the role remedies play to counter skills obsolescence is analysed. Four empirical analyses that relate skills obsolescence to risk factors and remedies are presented. We find that most risk factors identified in the literature can be validated empirically. The remedies for skills obsolescence are not effective in all situations: the results show that there is considerable variation in the effectiveness of the remedies across different types of skills obsolescence. Although current available data does not allow a comprehensive analysis, which also takes account of relations between the various types of skills obsolescence, the results obtained are plausible and offer a starting point for further research.education, training and the labour market;

    A specification-based IDS for detecting attacks on RPL-based network topology

    Get PDF
    Routing Protocol for Low power and Lossy network (RPL) topology attacks can downgrade the network performance significantly by disrupting the optimal protocol structure. To detect such threats, we propose a RPL-specification, obtained by a semi-auto profiling technique that constructs a high-level abstract of operations through network simulation traces, to use as reference for verifying the node behaviors. This specification, including all the legitimate protocol states and transitions with corresponding statistics, will be implemented as a set of rules in the intrusion detection agents, in the form of the cluster heads propagated to monitor the whole network. In order to save resources, we set the cluster members to report related information about itself and other neighbors to the cluster head instead of making the head overhearing all the communication. As a result, information about a cluster member will be reported by different neighbors, which allow the cluster head to do cross-check. We propose to record the sequence in RPL Information Object (DIO) and Information Solicitation (DIS) messages to eliminate the synchronized issue created by the delay in transmitting the report, in which the cluster head only does cross-check on information that come from sources with the same sequence. Simulation results show that the proposed Intrusion Detection System (IDS) has a high accuracy rate in detecting RPL topology attacks, while only creating insignificant overhead (about 6.3%) that enable its scalability in large-scale network

    Interference management for co-channel mobile femtocells technology in LTE networks

    Get PDF
    The dense deployment of Femtocells within the Macrocell's coverage is expected to dominate the future of Long Term Evolution (LTE) networks. While Mobile Femtocells (Mobile-Femtos) could be the solution for vehicular networks when there is a need to improve the vehicular User Equipment (UE) performance by mitigating the impact of penetration loss and path-loss issues. The deployed Femtocells have operated in a co-channel deployment due to the scarcity of spectrums. This issue causes interference between Femtocells and Macrocells as well it causes extra overhead on the LTE networks because of the co-tire interference between adjacent Femtocells. In this paper two interference scenarios are considered, the interference between Mobile-Femto and Macrocell, and the interference between the Mobile Femtos themselves. Therefore, to avoid the generated interference between Femtocells, the controlled transmission powers as well as the coverage planning techniques have been discussed. While in the worst-case scenarios, a frequency reuse scheme has been proposed to avoid the generated interference effectively and dynamically between the Mobile-Femtos as well as their UEs and between the Macrocell UEs

    Mobility management for vehicular user equipment in LTE/mobile femtocell networks

    Get PDF
    Vehicular User Equipment (UE) performance during mobility faces two issues relating to signaling and transmission, namely Handover (HO) and link adaptation. This paper shows that both processes are experiencing degradation during mobility and that vehicular UEs suffer from call drops and loss of connections. Therefore, this work presents an effective technique using Mobile-Femtos to improve vehicular UEs' HO process and link quality. Results show that vehicular UEs attached to a Mobile-Femto achieved better signalling and Link Ergodic capacity and as a consequence the outage probability was reduced. The achieved results indicated that deploying Mobile-Femtos under 25dB Vehicular Penetration Loss (VPL) has improved the vehicular UE Link Ergodic capacity by 1% and reduced the signal outage probability by 1.8% compared to the eNB direct transmission. Consequently, Drop Calls Probability (DCP) and Block Calls Probability (BCP) have been reduced by 7% and 14% respectively compared to the direct transmission from the eNB

    Performance evaluation of mobile users served by fixed and mobile femtocells in LTE networks

    Get PDF
    This paper investigates the concept of Mobile Femtocell with considering the feasibility of deploying Mobile Femtocells in public transportation vehicles such as trains, buses or private cars that form its own cell inside vehicles to serve vehicular and mobile User Equipments. This study is the launch of cell-edge mobile users who have always suffered degradation in the Quality of Service (QoS). Therefore, an investigation on the performance of LTE cell-edge mobile User Equipment e.g. users’ throughput, SINR, SNR, SIR, spectral efficiency and Handover performance, have been considered with deploying Fixed Femtocells and Mobile Femtocells in Long Term Evolution network. Two scenarios have been proposed in this study; Fixed Femtocells with mobile users and Mobile Femtocells with mobile users. More scenarios maybe considered in the case of Mobile Femtocell’s handover procedure. MATLAB simulation has been used for the purpose of simulating the designed scenarios and implementing the integrated mathematical equations. The simulated results have demonstrated the benefits of having Mobile Femtocells over the Fixed Femtocells in terms of mobile User Equipments’ performance

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    Mobile femtocell utilisation in LTE vehicular environment: vehicular penetration loss elimination and performance enhancement

    Get PDF
    Mobile computing is fast becoming a vital part of everyday life in which User Equipment (UE) demand being reachable anywhere and at anytime, as they spend much time travellingfrom one place to another, often by trains or buses. The ultimate aim of passengers is the ability to be connected to the Internet while they are moving from one place to another with their mobile devices. Providing indoor coverage on trains and buses directly with outdoor Base Stations (BSs) may not be a good solution due to the high density of use and path losses in the LTE network. This limitation can result in poor signal quality inside the train, and offering broadband services is not always possible. Clearly improvement to broadband access on buses and trains could be achieved by installing more BSs close to railway and bus routes and terminals. However, this solution is not ideal for the Internet Service Providers (ISPs) due to the high investment needed to deploy many more BSs. In addition, such a solution will introduce additional complexity by increasing the number of Handovers (HOs). This issue has focused the research community effort on developing solutions that take advantage of the existing wireless infrastructure without increasing the number of BSs. One method being considered is the development of more efficient methods and technologies to manage the UE’s mobility in seamless ways. In this paper we propose adoption of Mobile Femtocell (Mobile-Femto) technology as a solution to mitigate the Vehicular Penetration Loss (VPL) and Path Loss, with consequent improvement to the vehicular UE’s performance in LTE networks. Our results, using a Matlab simulation model, showed a noticeable improvement in the achieved Ergodic capacity by 5% under a VPL of 40dB while 90% of vehicular UEs spectral efficiency has improved by 1.3b/cu under a VPL of 25dB. In addition, 80% of vehicular UEs have improved their throughput and SINR by 300kb/s and 4dB respectively after implementing the Mobile-Femto into the Macrocell in LTE networks

    A formally verified AKA protocol for vertical handover in heterogeneous environments using Casper/FDR

    Get PDF
    Next generation networks will comprise different wireless networks including cellular technologies, WLAN and indoor technologies. To support these heterogeneous environments, there is a need to consider a new design of the network infrastructure. Furthermore, this heterogeneous environment implies that future devices will need to roam between different networks using vertical handover techniques. When a mobile user moves into a new foreign network, data confidentiality and mutual authentication between the user and the network are vital issues in this heterogeneous environment. This article deals with these issues by first examining the implication of moving towards an open architecture, and then looking at how current approaches such as the 3GPP, HOKEY and mobile ethernet respond to the new environment while trying to address the security issue. The results indicate that a new authentication and key agreement protocol is required to secure handover in this environment. Casper/FDR, is used in the analysis and development of the protocol. The proposed protocol has been proven to be successful in this heterogeneous environment

    A formally verified device authentication protocol using Casper/FDR

    Get PDF
    For communication in Next Generation Networks, highly-developed mobile devices will enable users to store and manage a lot of credentials on their terminals. Furthermore, these terminals will represent and act on behalf of users when accessing different networks and connecting to a wide variety of services. In this situation, it is essential for users to trust their terminals and for all transactions using them to be secure. This paper analyses a number of the Authentication and Key Agreement protocols between the users and mobile terminals, then proposes a novel device authentication protocol. The proposed protocol is analysed and verified using a formal methods approach based on Casper/FDR compiler
    • …
    corecore