2,575 research outputs found
Radio imaging of core-dominated high redshift quasars
VLA imaging at kiloparsec-scale resolution of sixteen core-dominated
radio-loud QSOs is presented. Many objects appear to display variable radio
emission and their radio morphologies are significantly smaller than those of
steep-spectrum quasars, consistent with these objects being observed at sight
lines close to their (relativistic, 4-7) jet axes. The
usefulness of the radio source orientation indicator R_V, being defined as
ratio of radio core and rest frame optical V-band luminosity, is confirmed.Comment: 11 pages, 11 postscript figures, uses aa.cls 4.03 for LaTeX2e To
appear in Astronomy and Astrophysic
Characteristics of UGC galaxies detected by IRAS
Infrared Astronomy Satellite (IRAS) detection rates at 60 microns were determined for the Uppsala General Catalog of Galaxies (Nilson 1973; the UCG). Late-type spirals, characterized by a normal IR/B ratio of approximately 0.6, are detected to a velocity of approximately 6000 km/s for L sub B = L sub *. Contrary to the situation for IRAS-selected galaxy samples, little evidence was found for a correlation between IR/B and 60/100 microns in this large optically-selected sample. Thus a significant fraction of the IRAS-measured far-infrared flux from normal spirals must originate in the diffuse interstellar medium, heated by the interstellar radiation field. Support was not found for Burstein and Lebofsky's (1986) conclusion that spiral disks are optically thick in the far-infrared
Keck spectroscopy of z=1-3 ULIRGs from the Spitzer SWIRE survey
(Abridged) High-redshift ultra luminous infrared galaxies contribute the bulk
of the cosmic IR background and are the best candidates for very massive
galaxies in formation at z>1.5. We present Keck/LRIS optical spectroscopy of 35
z>1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic
survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary
targets belong to the ``IR-peak'' class of galaxies, having the 1.6 micron
(restframe) stellar feature detected in the IRAC Spitzer channels.The spectral
energy distributions of the main targets are thoroughly analyzed, by means of
spectro-photometric synthesis and multi-component fits (stars + starburst dust
+ AGN torus). The IR-peak selection technique is confirmed to successfully
select objects above z=1.4, though some of the observed sources lie at lower
redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62%
host an AGN component, two thirds being type-1 and one third type-2 objects.
The selection, limited to r'<24.5, is likely biased to optically-bright AGNs.
The SEDs of non-AGN IR-peakers resemble those of starbursts (SFR=20-500
Msun/yr) hosted in massive (M>1e11 Msun) galaxies. The presence of an AGN
component provides a plausible explanation for the spectroscopic/photometric
redshift discrepancies, as the torus produces an apparent shift of the peak to
longer wavelengths. These sources are analyzed in IRAC and optical-IR color
spaces. In addition to the IR-peak galaxies, we present redshifts and spectral
properties for 150 objects, out of a total of 301 sources on slits.Comment: Accepted for publications on Astronomy and Astrophysics (acceprance
date March 8th, 2007). 33 pages. The quality of some figures have been
degrade
Obscuration in extremely luminous quasars
The spectral energy distributions and infrared (IR) spectra of a sample of
obscured AGNs selected in the mid-IR are modeled with recent clumpy torus
models to investigate the nature of the sources, the properties of the
obscuring matter, and dependencies on luminosity. The sample contains 21
obscured AGNs at z=1.3-3 discovered in the largest Spitzer surveys (SWIRE,
NDWFS, & FLS) by means of their extremely red IR to optical colors. All sources
show the 9.7micron silicate feature in absorption and have extreme mid-IR
luminosities (L(6micron)~10^46 erg/s). The IR SEDs and spectra of 12 sources
are well reproduced with a simple torus model, while the remaining 9 sources
require foreground extinction from a cold dust component to reproduce both the
depth of the silicate feature and the near-IR emission from hot dust. The
best-fit torus models show a broad range of inclinations, with no preference
for the edge-on torus expected in obscured AGNs. Based on the unobscured QSO
mid-IR luminosity function, and on a color-selected sample of obscured and
unobscured IR sources, we estimate the surface densities of obscured and
unobscured QSOs at L(6micron)>10^12 Lsun, and z=1.3-3.0 to be about 17-22
deg^-2, and 11.7 deg^-2, respectively. Overall we find that ~35-41% of luminous
QSOs are unobscured, 37-40% are obscured by the torus, and 23-25% are obscured
by a cold absorber detached from the torus. These fractions constrain the torus
half opening angle to be ~67 deg. This value is significantly larger than found
for FIR selected samples of AGN at lower luminosity (~46 deg), supporting the
receding torus scenario. A far-IR component is observed in 8 objects. The
estimated far-IR luminosities associated with this component all exceed
3.3x10^12 Lsun, implying SFRs of 600-3000 Msun/yr. (Abridged)Comment: ApJ accepte
The Far-infrared Continuum of Quasars
ISO provides a key new far-infrared window through which to observe the
multi-wavelength spectral energy distributions (SEDs) of quasars and active
galactic nuclei (AGN). It allows us, for the first time, to observe a
substantial fraction of the quasar population in the far-IR, and to obtain
simultaneous, multi-wavelength observations from 5--200 microns. With these
data we can study the behavior of the IR continuum in comparison with
expectations from competing thermal and non-thermal models. A key to
determining which mechanism dominates, is the measurement of the peak
wavelength of the emission and the shape of the far-IR--mm turnover. Turnovers
which are steeper than frequency^2.5 indicate thermal dust emission in the
far-IR.
Preliminary results from our ISO data show broad, fairly smooth, IR continuum
emission with far-IR turnovers generally too steep to be explained by
non-thermal synchrotron emission. Assuming thermal emission throughout leads to
a wide inferred temperature range of 50-1000 K. The hotter material, often
called the AGN component, probably originates in dust close to and heated by
the central source, e.g. the ubiquitous molecular torus. The cooler emission is
too strong to be due purely to cool, host galaxy dust, and so indicates either
the presence of a starburst in addition to the AGN or AGN-heated dust covering
a wider range of temperatures than present in the standard, optically thick
torus models.Comment: 4 pages, to be published in the proceedings of "The Universe as Seen
by ISO," ed. M. Kessler. This and related papers can be found at
http://hea-www.harvard.edu/~ehooper/ISOkp/ISOkp.htm
Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey
We investigate the clustering of galaxies selected in the 3.6 micron band of
the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular
two-point correlation function is calculated for eleven samples with flux
limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular
clustering strength is measured at >5-sigma significance at all flux limits,
with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law
model, A\theta^{-0.8}. We estimate the redshift distributions of the samples
using phenomological models, simulations and photometric redshifts, and so
derive the spatial correlation lengths. We compare our results with the GalICS
(Galaxies In Cosmological Simulations) models of galaxy evolution and with
parameterized models of clustering evolution. The GalICS simulations are
consistent with our angular correlation functions, but fail to match the
spatial clustering inferred from the phenomological models or the photometric
redshifts. We find that the uncertainties in the redshift distributions of our
samples dominate the statistical errors in our estimates of the spatial
clustering. At low redshifts (median z<0.5) the comoving correlation length is
approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with
increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample,
for which the median redshift is z=1. We suggest that this trend can be
attributed to a decrease in the average galaxy and halo mass in the fainter
flux-limited samples, corresponding to changes in the relative numbers of
early- and late-type galaxies. However, we cannot rule out strong evolution of
the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA
Obscured and unobscured AGN populations in a hard-X-ray selected sample of the XMDS survey
Our goal is to probe the populations of obscured and unobscured AGN
investigating their optical-IR and X-ray properties as a function of X-ray
flux, luminosity and redshift within a hard X-ray selected sample of 136 X-ray
sources in the XMM Medium Deep Survey (XMDS) with wide multiwavelength
coverage. The XMDS area is covered with optical photometry from the VVDS and
CFHTLS surveys and infrared Spitzer data. Based on the X-ray luminosity and
X-ray to optical ratio, 132 sources are likely AGN, of which 122 have
unambiguous optical - IR identification. The observed optical and IR spectral
energy distributions of sources are fitted with AGN/galaxy templates in order
to classify them and compute photometric redshifts. 70% of the AGN are fitted
by a type 2 AGN or a star forming galaxy template and are grouped together in a
single class of ``optically obscured'' AGN. They have ``red'' optical colors
and generally show significant X-ray absorption from X-ray spectra or hardness
ratios (N cm). Sources with SEDs typical of type 1 AGN
have ``blue'' optical colors and exhibit X-ray absorption in about 30% of
cases. We performed a stacking analysis for obscured and type 1 AGN. The
stacked X-ray spectrum of obscured AGN is flatter than that of type 1 AGN and
has an average spectral slope of Gamma = 1.6. The subsample of objects fitted
by a galaxy template has an even harder stacked spectrum, with Gamma = 1.2 -
1.3. The obscured fraction is larger at lower fluxes, lower redshifts and lower
luminosities. X-ray absorption is less common than ``optical'' obscuration and
its incidence is nearly constant with redshift and luminosity. This implies
that X-ray absorption is not necessarily related to optical obscuration.Comment: 33 pages, 21 figures, accepted for publication in A&
- …
