1,489 research outputs found
Upper Carboniferous of Southwestern Iowa
The district at hand is one somewhat remote from any known field of productive Coal Measures, but being Upper Carboniferous in age is a region to which considerable geological and economical interest has been attached. There has always been an anticipation of finding heavy fuel veins, but as yet these looked-for strata have not been positively located. Reports, often manufactured, and the meeting of thinner veins of coal, have led to the increased expectations now prevalent in the district
Southern Extension of the Cretaceous in Iowa
The Cretaceous deposits of Iowa, from time to time, have received the attention of a number of geologists. The most important researches were made by Marcou, Meek, Heer, White and Calvin. Their investigations were carried on chiefly in the vicinity of Sioux City. The formation elsewhere in the State has, with a few exceptions, received no consideration. Its exact extent is yet to be determined; its vertical thickness is yet unknown; the relative ages of some of its beds remain to be established
Topography of the Granite and Porphyry Region of Missouri
When speaking of the Archaean hills of Missouri Pumpelly has likened them unto an archipelago of islands in the Lower Silurian strata which surrounded them as a whole and separate them from one another. To one who knows this interesting territory with its isolated and grouped knobs hills and mountains of crystalline rocks standing out more or less prominently and dotting the broad expanse of more recent sedimentaries, this figure is an exceedingly happy one; one most admirably taken
Cement Materials in Iowa
Sometime after the discovery of massive deposits of the Cretaceous chalk in the northwestern portion of the state the question arose as to the adaptability thereof-- whether this calcareous material might be considered of any practical value and if so what means should be taken to reduce it preparatory to its application. Certain initiatory steps were undertaken towards determining these points but as yet but little has been done. Chemical analyses have been made of the rock and test shafts put down in order to ascertain the thickness of the beds, but further development has never been attempted
Obscuration in extremely luminous quasars
The spectral energy distributions and infrared (IR) spectra of a sample of
obscured AGNs selected in the mid-IR are modeled with recent clumpy torus
models to investigate the nature of the sources, the properties of the
obscuring matter, and dependencies on luminosity. The sample contains 21
obscured AGNs at z=1.3-3 discovered in the largest Spitzer surveys (SWIRE,
NDWFS, & FLS) by means of their extremely red IR to optical colors. All sources
show the 9.7micron silicate feature in absorption and have extreme mid-IR
luminosities (L(6micron)~10^46 erg/s). The IR SEDs and spectra of 12 sources
are well reproduced with a simple torus model, while the remaining 9 sources
require foreground extinction from a cold dust component to reproduce both the
depth of the silicate feature and the near-IR emission from hot dust. The
best-fit torus models show a broad range of inclinations, with no preference
for the edge-on torus expected in obscured AGNs. Based on the unobscured QSO
mid-IR luminosity function, and on a color-selected sample of obscured and
unobscured IR sources, we estimate the surface densities of obscured and
unobscured QSOs at L(6micron)>10^12 Lsun, and z=1.3-3.0 to be about 17-22
deg^-2, and 11.7 deg^-2, respectively. Overall we find that ~35-41% of luminous
QSOs are unobscured, 37-40% are obscured by the torus, and 23-25% are obscured
by a cold absorber detached from the torus. These fractions constrain the torus
half opening angle to be ~67 deg. This value is significantly larger than found
for FIR selected samples of AGN at lower luminosity (~46 deg), supporting the
receding torus scenario. A far-IR component is observed in 8 objects. The
estimated far-IR luminosities associated with this component all exceed
3.3x10^12 Lsun, implying SFRs of 600-3000 Msun/yr. (Abridged)Comment: ApJ accepte
Infrared-Faint Radio Sources: A New Population of High-redshift Radio Galaxies
We present a sample of 1317 Infrared-Faint Radio Sources (IFRSs) that, for
the first time, are reliably detected in the infrared, generated by
cross-correlating the Wide-Field Infrared Survey Explorer (WISE) all-sky survey
with major radio surveys. Our IFRSs are brighter in both radio and infrared
than the first generation IFRSs that were undetected in the infrared by the
Spitzer Space Telescope. We present the first spectroscopic redshifts of IFRSs,
and find that all but one of the IFRSs with spectroscopy has z > 2. We also
report the first X-ray counterparts of IFRSs, and present an analysis of radio
spectra and polarization, and show that they include Gigahertz-Peaked Spectrum,
Compact Steep Spectrum, and Ultra-Steep Spectrum sources. These results,
together with their WISE infrared colours and radio morphologies, imply that
our sample of IFRSs represents a population of radio-loud Active Galactic
Nuclei at z > 2. We conclude that our sample consists of lower-redshift
counterparts of the extreme first generation IFRSs, suggesting that the fainter
IFRSs are at even higher redshift.Comment: 23 pages, 17 figures. Submitted to MNRA
On Measuring the Infrared Luminosity of Distant Galaxies with the Space Infrared Telescope Facility
The Space Infrared Telescope Facility (SIRTF) will revolutionize the study of
dust-obscured star formation in distant galaxies. Although deep images from the
Multiband Imaging Photometer for SIRTF (MIPS) will provide coverage at 24, 70,
and 160 micron, the bulk of MIPS-detected objects may only have accurate
photometry in the shorter wavelength bands due to the confusion noise.
Therefore, we have explored the potential for constraining the total infrared
(IR) fluxes of distant galaxies with solely the 24 micron flux density, and for
the combination of 24 micron and 70 micron data. We also discuss the inherent
systematic uncertainties in making these transitions. Under the assumption that
distant star-forming galaxies have IR spectral energy distributions (SEDs) that
are represented somewhere in the local Universe, the 24 micron data (plus
optical and X-ray data to allow redshift estimation and AGN rejection)
constrains the total IR luminosity to within a factor of 2.5 for galaxies with
0.4 < z < 1.6. Incorporating the 70 micron data substantially improves this
constraint by a factor < 6. Lastly, we argue that if the shape of the IR SED is
known (or well constrained; e.g., because of high IR luminosity, or low
ultraviolet/IR flux ratio), then the IR luminosity can be estimated with more
certainty.Comment: 4 pages, 3 figures (2 in color). Accepted for Publication in the
Astrophysical Journal Letters, 2002 Nov
Distant ULIRGs in the SWIRE Survey
Covering ~49 square degrees in 6 separate fields, the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Legacy survey has the largest area among Spitzer’s “wedding cake” suite of extragalactic surveys. SWIRE is thus optimized for studies of large scale structure, population studies requiring excellent statistics, and searches for rare objects. We discuss the search for high redshift ultraluminous infrared galaxies (ULIRGs) with SWIRE. We have selected complete samples of F_(24μm) > 200 μJy, optically faint, candidate high redshift (z>1) ULIRGs, based on their mid-infrared spectral energy distributions (SEDs). These can be broadly categorized as star formation (SF)-dominated, based on the presence of a clear stellar peak at rest frame 1.6μm redshifted into the IRAC bands, or AGN-dominated if the SED rises featureless into the mid-infrared. AGN-dominated galaxies strongly dominate at the brightest 24μm fluxes, while SF-dominated objects rise rapidly in frequency as F_(24) drops, dominating the sample below 0.5 mJy. We derive photometric redshifts and luminosities for SFdominated objects sampling the z~1.2-3 range. Luminosity functions are being derived and compared with submm-selected samples at similar redshifts. The clustering, millimeter and IR spectral properties of the samples have also been investigated
Keck spectroscopy of z=1-3 ULIRGs from the Spitzer SWIRE survey
(Abridged) High-redshift ultra luminous infrared galaxies contribute the bulk
of the cosmic IR background and are the best candidates for very massive
galaxies in formation at z>1.5. We present Keck/LRIS optical spectroscopy of 35
z>1.4 luminous IR galaxies in the Spitzer Wide-area Infra-Red Extragalactic
survey (SWIRE) northern fields (Lockman Hole, ELAIS-N1, ELAIS-N2). The primary
targets belong to the ``IR-peak'' class of galaxies, having the 1.6 micron
(restframe) stellar feature detected in the IRAC Spitzer channels.The spectral
energy distributions of the main targets are thoroughly analyzed, by means of
spectro-photometric synthesis and multi-component fits (stars + starburst dust
+ AGN torus). The IR-peak selection technique is confirmed to successfully
select objects above z=1.4, though some of the observed sources lie at lower
redshift than expected. Among the 16 galaxies with spectroscopic redshift, 62%
host an AGN component, two thirds being type-1 and one third type-2 objects.
The selection, limited to r'<24.5, is likely biased to optically-bright AGNs.
The SEDs of non-AGN IR-peakers resemble those of starbursts (SFR=20-500
Msun/yr) hosted in massive (M>1e11 Msun) galaxies. The presence of an AGN
component provides a plausible explanation for the spectroscopic/photometric
redshift discrepancies, as the torus produces an apparent shift of the peak to
longer wavelengths. These sources are analyzed in IRAC and optical-IR color
spaces. In addition to the IR-peak galaxies, we present redshifts and spectral
properties for 150 objects, out of a total of 301 sources on slits.Comment: Accepted for publications on Astronomy and Astrophysics (acceprance
date March 8th, 2007). 33 pages. The quality of some figures have been
degrade
- …