20 research outputs found
Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache
The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicolaâwheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs
Identification of wheat Pm genes efficient against triticale powdery mildew
International audienc
Triticale powdery mildew: population characterization and wheat gene efficiency
Triticale powdery mildew: population characterization and wheat gene efficienc
Use of intergeneric crosses in cereals and in particular for increasing the genetic diversity of triticale
Use of intergeneric crosses in cereals and in particular for increasing the genetic diversity of triticale. 9. International Triticale Symposiu
Recherche de nouvelles variétés de triticale plus résistantes à l'oïdium
National audienceTo face the recent emergence of powdery mildew on triticale species, a collaborative programmebetween breeders, public research and technical institute has been conducted from 2008 to 2011 withfinancial support of French Agriculture Ministry. The aims were: a survey of disease evolution, a betterknowledge of pathogen virulence, finding new and varied resistance genes to create new resistantvarieties, a better understanding of genetic resistance and especially durable resistance. Now, we knowthat powdery mildew on triticale came from bread wheat formae speciales. We identified bread wheatgenes that seem to be efficient against triticale powdery mildew (Pm1-Chopinâs allele, Pm3d, Pm4,MlTo, MlSo especially and in a lesser extend MlSi2, MlTa2 et Mld). We identified resistant genotypes(genetic resources and material derived from new wheat x rye crosses) and potential molecular SSRmarkers from bibliography and from segregating triticale populations. Nevertheless, several pointsremain to be investigated more deeply
Renforcer les rĂ©sistances du triticale Ă la fusariose par lâintĂ©gration de leviers gĂ©nĂ©tiques et agronomiques
Renforcer les rĂ©sistances du triticale Ă la fusariose par lâintĂ©gration de leviers gĂ©nĂ©tiques et agronomiques. SĂ©minaire du ComitĂ© Scientifique du CTP
Exploitation de la variabilitĂ© gĂ©nĂ©tique dâ[i]Aegilops tauschii[/i] dans lâamĂ©lioration du blĂ© tendre
National audienceGenetic improvement of crops is feasible only if breeders have at their disposal a sufficient pool of variability. In the case of bread wheat which is allohexaploid (2n=42, AABBDD), intraspecific variability has already been extensively exploited. Even if genetic progress is still possible, enlargement of variability available is crucial for breeders. Possibly, the best solution is to exploit wheat diploid progenitors and tetraploid wheats. Aegilops tauschii (2n=14, DD) is among the three progenitors the one with the highest potential. Indeed, its genome has full homology with the wheat D genome and it displays large genetic variation since it is adapted to a range of continental-type habitats.[br/]Synthetic wheats derived from hybridization between tetraploid wheats and accessions of [i]Ae. tauschii[/i] were produced by Club5 and INRA. The objective of the project was to carry out assessment of synthetic wheats and introduce [i]Ae. tauschii[/i] genetic diversity conferring novel traits in adapted wheats.Significant outcomes concerned i) large variability of grain storage proteins which are involved in baking quality and ii) selection in the progeny of hybrids between synthetic wheats and elite wheats of genotypes adapted to low input farming. These genotypes with a yield performance equal to or higher than check cultivars in low input farming displayed very high levels of resistance to diseases. Nevertheless they were late, tall, susceptible to lodging and had a relatively low Chopin alveographvalue (W).L'amĂ©lioration gĂ©nĂ©tique ne peut ĂȘtre envisagĂ©e que si les sĂ©lectionneurs disposent d'un rĂ©servoir de variabilitĂ© suffisant. Dans le cas du blĂ© tendre qui est allohexaploĂŻde (2n=42, AABBDD), la variabilitĂ© intraspĂ©cifique a dĂ©jĂ Ă©tĂ© largement exploitĂ©e. MĂȘme si des progrĂšs gĂ©nĂ©tiques sont encore possibles, il est urgent d'accroĂźtre le potentiel de variabilitĂ© disponible du blĂ©. La meilleure solution est l'exploitation de ses progĂ©niteurs et des blĂ©s tĂ©traploĂŻdes. [i]Aegilops tauschii[/i] (2n=14, DD) est parmi ses trois progĂ©niteurs diploĂŻdes celui qui prĂ©sente le plus d'intĂ©rĂȘt. En effet son gĂ©nome prĂ©sente une homologie complĂšte avec le D du blĂ© et sa variabilitĂ© gĂ©nĂ©tique est supĂ©rieure Ă celles des deux autres progĂ©niteurs : [i]Triticum monococcum[/i] et[i] Ae. speltoides.[/i]Des blĂ©s dits synthĂ©tiques (2n=42, AABBDD) issus de lâhybridation entre des blĂ©s tĂ©traploĂŻdes et accessions dâ[i]Ae. tauschii[/i] ont Ă©tĂ© crĂ©Ă©s par lâINRA et le GIE Club5. L'objectif du projet Ă©tait de poursuivre leur Ă©valuation et introduire de lâinformation gĂ©nĂ©tique dâ[i]Ae. tauschii[/i] confĂ©rant des caractĂšres nouveaux dâintĂ©rĂȘt agronomique dans du matĂ©riel Ă©lite de blĂ© tendre.Les rĂ©sultats les plus significatifs concernent i) la trĂšs grande variabilitĂ© des protĂ©ines de rĂ©serve du grain dont le rĂŽle est primordial dans la qualitĂ© boulangĂšre et ii) la sĂ©lection dans la descendance dâhybrides entre des blĂ©s synthĂ©tiques et des blĂ©s tendres Elite de gĂ©niteurs adaptĂ©s Ă des conduites en intrants rĂ©duits. Ces gĂ©niteurs dont le niveau de rendement est Ă©gal ou supĂ©rieur Ă celui des variĂ©tĂ©s actuelles en conduite âFaibles intrantsâ prĂ©sentent un trĂšs bon niveau de rĂ©sistance aux maladies. NĂ©anmoins ils sont tardifs, hauts, sensibles Ă la verse et ont une force boulangĂšre (W) relativement faible
Exploitation de la variabilitĂ© gĂ©nĂ©tique dâAegilops tauschii dans lâamĂ©lioration du blĂ© tendre
L'amĂ©lioration gĂ©nĂ©tique ne peut ĂȘtre envisagĂ©e que si les sĂ©lectionneurs disposent d'un rĂ©servoir de variabilitĂ© suffisant. Dans le cas du blĂ© tendre qui est allohexaploĂŻde (2n=42, AABBDD), la variabilitĂ© intraspĂ©cifique a dĂ©jĂ Ă©tĂ© largement exploitĂ©e. MĂȘme si des progrĂšs gĂ©nĂ©tiques sont encore possibles, il est urgent d'accroĂźtre le potentiel de variabilitĂ© disponible du blĂ©. La meilleure solution est l'exploitation de ses progĂ©niteurs et des blĂ©s tĂ©traploĂŻdes. Aegilops tauschii (2n=14, DD) est parmi ses trois progĂ©niteurs diploĂŻdes celui qui prĂ©sente le plus d'intĂ©rĂȘt. En effet son gĂ©nome prĂ©sente une homologie complĂšte avec le D du blĂ© et sa variabilitĂ© gĂ©nĂ©tique est supĂ©rieure Ă celles des deux autres progĂ©niteurs : Triticum monococcum et Ae. speltoides.
Des blĂ©s dits synthĂ©tiques (2n=42, AABBDD) issus de lâhybridation entre des blĂ©s tĂ©traploĂŻdes et accessions dâAe. tauschii ont Ă©tĂ© crĂ©Ă©s par lâINRA et le GIE Club5. L'objectif du projet Ă©tait de poursuivre leur Ă©valuation et introduire de lâinformation gĂ©nĂ©tique dâAe. tauschii confĂ©rant des caractĂšres nouveaux dâintĂ©rĂȘt agronomique dans du matĂ©riel Ă©lite de blĂ© tendre.
Les rĂ©sultats les plus significatifs concernent i) la trĂšs grande variabilitĂ© des protĂ©ines de rĂ©serve du grain dont le rĂŽle est primordial dans la qualitĂ© boulangĂšre et ii) la sĂ©lection dans la descendance dâhybrides entre des blĂ©s synthĂ©tiques et des blĂ©s tendres Elite de gĂ©niteurs adaptĂ©s Ă des conduites en intrants rĂ©duits. Ces gĂ©niteurs dont le niveau de rendement est Ă©gal ou supĂ©rieur Ă celui des variĂ©tĂ©s actuelles en conduite âFaibles intrantsâ prĂ©sentent un trĂšs bon niveau de rĂ©sistance aux maladies. NĂ©anmoins ils sont tardifs, hauts, sensibles Ă la verse et ont une force boulangĂšre (W) relativement faible.Genetic improvement of crops is feasible only if breeders have at their disposal a sufficient pool of variability. In the case of bread wheat which is allohexaploid (2n=42, AABBDD), intraspecific variability has already been extensively exploited. Even if genetic progress is still possible, enlargement of variability available is crucial for breeders. Possibly, the best solution is to exploit wheat diploid progenitors and tetraploid wheats. Aegilops tauschii (2n=14, DD) is among the three progenitors the one with the highest potential. Indeed, its genome has full homology with the wheat D genome and it displays large genetic variation since it is adapted to a range of continental-type habitats.[br/]
Synthetic wheats derived from hybridization between tetraploid wheats and accessions of Ae. tauschii were produced by Club5 and INRA. The objective of the project was to carry out assessment of synthetic wheats and introduce Ae. tauschii genetic diversity conferring novel traits in adapted wheats.
Significant outcomes concerned i) large variability of grain storage proteins which are involved in baking quality and ii) selection in the progeny of hybrids between synthetic wheats and elite wheats of genotypes adapted to low input farming. These genotypes with a yield performance equal to or higher than check cultivars in low input farming displayed very high levels of resistance to diseases. Nevertheless they were late, tall, susceptible to lodging and had a relatively low Chopin alveograph
value (W)