20 research outputs found

    Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache

    Get PDF
    The ascomycete Mycosphaerella graminicola is the causal agent of septoria tritici blotch (STB), one of the most destructive foliar diseases of bread and durum wheat globally, particularly in temperate humid areas. A screening of the French bread wheat cultivars Apache and Balance with 30 M. graminicola isolates revealed a pattern of resistant responses that suggested the presence of new genes for STB resistance. Quantitative trait loci (QTL) analysis of a doubled haploid (DH) population with five M. graminicola isolates in the seedling stage identified four QTLs on chromosomes 3AS, 1BS, 6DS and 7DS, and occasionally on 7DL. The QTL on chromosome 6DS flanked by SSR markers Xgpw5176 and Xgpw3087 is a novel QTL that now can be designated as Stb18. The QTLs on chromosomes 3AS and 1BS most likely represent Stb6 and Stb11, respectively, and the QTLs on chromosome 7DS are most probably identical with Stb4 and Stb5. However, the QTL identified on chromosome 7DL is expected to be a new Stb gene that still needs further characterization. Multiple isolates were used and show that not all isolates identify all QTLs, which clearly demonstrates the specificity in the M. graminicola–wheat pathosystem. QTL analyses were performed with various disease parameters. The development of asexual fructifications (pycnidia) in the characteristic necrotic blotches of STB, designated as parameter P, identified the maximum number of QTLs. All other parameters identified fewer but not different QTLs. The segregation of multiple QTLs in the Apache/Balance DH population enabled the identification of DH lines with single QTLs and multiple QTL combinations. Analyses of the marker data of these DH lines clearly demonstrated the positive effect of pyramiding QTLs to broaden resistance spectra as well as epistatic and additive interactions between these QTLs. Phenotyping of the Apache/Balance DH population in the field confirmed the presence of the QTLs that were identified in the seedling stage, but Stb18 was inconsistently expressed and might be particularly effective in young plants. In contrast, an additional QTL for STB resistance was identified on chromosome 2DS that is exclusively and consistently expressed in mature plants over locations and time, but it was also strongly related with earliness, tallness as well as resistance to Fusarium head blight. Although to date no Stb gene has been reported on chromosome 2D, the data provide evidence that this QTL is only indirectly related to STB resistance. This study shows that detailed genetic analysis of contemporary commercial bread wheat cultivars can unveil novel Stb genes that can be readily applied in marker-assisted breeding programs

    What is a Ga stem, what is a Gb stem in the Mehri of Oman

    No full text
    International audienc

    Triticale powdery mildew: population characterization and wheat gene efficiency

    No full text
    Triticale powdery mildew: population characterization and wheat gene efficienc

    Use of intergeneric crosses in cereals and in particular for increasing the genetic diversity of triticale

    No full text
    Use of intergeneric crosses in cereals and in particular for increasing the genetic diversity of triticale. 9. International Triticale Symposiu

    Recherche de nouvelles variétés de triticale plus résistantes à l'oïdium

    No full text
    National audienceTo face the recent emergence of powdery mildew on triticale species, a collaborative programmebetween breeders, public research and technical institute has been conducted from 2008 to 2011 withfinancial support of French Agriculture Ministry. The aims were: a survey of disease evolution, a betterknowledge of pathogen virulence, finding new and varied resistance genes to create new resistantvarieties, a better understanding of genetic resistance and especially durable resistance. Now, we knowthat powdery mildew on triticale came from bread wheat formae speciales. We identified bread wheatgenes that seem to be efficient against triticale powdery mildew (Pm1-Chopin’s allele, Pm3d, Pm4,MlTo, MlSo especially and in a lesser extend MlSi2, MlTa2 et Mld). We identified resistant genotypes(genetic resources and material derived from new wheat x rye crosses) and potential molecular SSRmarkers from bibliography and from segregating triticale populations. Nevertheless, several pointsremain to be investigated more deeply

    Renforcer les rĂ©sistances du triticale Ă  la fusariose par l’intĂ©gration de leviers gĂ©nĂ©tiques et agronomiques

    No full text
    Renforcer les rĂ©sistances du triticale Ă  la fusariose par l’intĂ©gration de leviers gĂ©nĂ©tiques et agronomiques. SĂ©minaire du ComitĂ© Scientifique du CTP

    Exploitation de la variabilitĂ© gĂ©nĂ©tique d’[i]Aegilops tauschii[/i] dans l’amĂ©lioration du blĂ© tendre

    No full text
    National audienceGenetic improvement of crops is feasible only if breeders have at their disposal a sufficient pool of variability. In the case of bread wheat which is allohexaploid (2n=42, AABBDD), intraspecific variability has already been extensively exploited. Even if genetic progress is still possible, enlargement of variability available is crucial for breeders. Possibly, the best solution is to exploit wheat diploid progenitors and tetraploid wheats. Aegilops tauschii (2n=14, DD) is among the three progenitors the one with the highest potential. Indeed, its genome has full homology with the wheat D genome and it displays large genetic variation since it is adapted to a range of continental-type habitats.[br/]Synthetic wheats derived from hybridization between tetraploid wheats and accessions of [i]Ae. tauschii[/i] were produced by Club5 and INRA. The objective of the project was to carry out assessment of synthetic wheats and introduce [i]Ae. tauschii[/i] genetic diversity conferring novel traits in adapted wheats.Significant outcomes concerned i) large variability of grain storage proteins which are involved in baking quality and ii) selection in the progeny of hybrids between synthetic wheats and elite wheats of genotypes adapted to low input farming. These genotypes with a yield performance equal to or higher than check cultivars in low input farming displayed very high levels of resistance to diseases. Nevertheless they were late, tall, susceptible to lodging and had a relatively low Chopin alveographvalue (W).L'amĂ©lioration gĂ©nĂ©tique ne peut ĂȘtre envisagĂ©e que si les sĂ©lectionneurs disposent d'un rĂ©servoir de variabilitĂ© suffisant. Dans le cas du blĂ© tendre qui est allohexaploĂŻde (2n=42, AABBDD), la variabilitĂ© intraspĂ©cifique a dĂ©jĂ  Ă©tĂ© largement exploitĂ©e. MĂȘme si des progrĂšs gĂ©nĂ©tiques sont encore possibles, il est urgent d'accroĂźtre le potentiel de variabilitĂ© disponible du blĂ©. La meilleure solution est l'exploitation de ses progĂ©niteurs et des blĂ©s tĂ©traploĂŻdes. [i]Aegilops tauschii[/i] (2n=14, DD) est parmi ses trois progĂ©niteurs diploĂŻdes celui qui prĂ©sente le plus d'intĂ©rĂȘt. En effet son gĂ©nome prĂ©sente une homologie complĂšte avec le D du blĂ© et sa variabilitĂ© gĂ©nĂ©tique est supĂ©rieure Ă  celles des deux autres progĂ©niteurs : [i]Triticum monococcum[/i] et[i] Ae. speltoides.[/i]Des blĂ©s dits synthĂ©tiques (2n=42, AABBDD) issus de l’hybridation entre des blĂ©s tĂ©traploĂŻdes et accessions d’[i]Ae. tauschii[/i] ont Ă©tĂ© crĂ©Ă©s par l’INRA et le GIE Club5. L'objectif du projet Ă©tait de poursuivre leur Ă©valuation et introduire de l’information gĂ©nĂ©tique d’[i]Ae. tauschii[/i] confĂ©rant des caractĂšres nouveaux d’intĂ©rĂȘt agronomique dans du matĂ©riel Ă©lite de blĂ© tendre.Les rĂ©sultats les plus significatifs concernent i) la trĂšs grande variabilitĂ© des protĂ©ines de rĂ©serve du grain dont le rĂŽle est primordial dans la qualitĂ© boulangĂšre et ii) la sĂ©lection dans la descendance d’hybrides entre des blĂ©s synthĂ©tiques et des blĂ©s tendres Elite de gĂ©niteurs adaptĂ©s Ă  des conduites en intrants rĂ©duits. Ces gĂ©niteurs dont le niveau de rendement est Ă©gal ou supĂ©rieur Ă  celui des variĂ©tĂ©s actuelles en conduite ‘Faibles intrants’ prĂ©sentent un trĂšs bon niveau de rĂ©sistance aux maladies. NĂ©anmoins ils sont tardifs, hauts, sensibles Ă  la verse et ont une force boulangĂšre (W) relativement faible

    Exploitation de la variabilitĂ© gĂ©nĂ©tique d’Aegilops tauschii dans l’amĂ©lioration du blĂ© tendre

    No full text
    L'amĂ©lioration gĂ©nĂ©tique ne peut ĂȘtre envisagĂ©e que si les sĂ©lectionneurs disposent d'un rĂ©servoir de variabilitĂ© suffisant. Dans le cas du blĂ© tendre qui est allohexaploĂŻde (2n=42, AABBDD), la variabilitĂ© intraspĂ©cifique a dĂ©jĂ  Ă©tĂ© largement exploitĂ©e. MĂȘme si des progrĂšs gĂ©nĂ©tiques sont encore possibles, il est urgent d'accroĂźtre le potentiel de variabilitĂ© disponible du blĂ©. La meilleure solution est l'exploitation de ses progĂ©niteurs et des blĂ©s tĂ©traploĂŻdes. Aegilops tauschii (2n=14, DD) est parmi ses trois progĂ©niteurs diploĂŻdes celui qui prĂ©sente le plus d'intĂ©rĂȘt. En effet son gĂ©nome prĂ©sente une homologie complĂšte avec le D du blĂ© et sa variabilitĂ© gĂ©nĂ©tique est supĂ©rieure Ă  celles des deux autres progĂ©niteurs : Triticum monococcum et Ae. speltoides. Des blĂ©s dits synthĂ©tiques (2n=42, AABBDD) issus de l’hybridation entre des blĂ©s tĂ©traploĂŻdes et accessions d’Ae. tauschii ont Ă©tĂ© crĂ©Ă©s par l’INRA et le GIE Club5. L'objectif du projet Ă©tait de poursuivre leur Ă©valuation et introduire de l’information gĂ©nĂ©tique d’Ae. tauschii confĂ©rant des caractĂšres nouveaux d’intĂ©rĂȘt agronomique dans du matĂ©riel Ă©lite de blĂ© tendre. Les rĂ©sultats les plus significatifs concernent i) la trĂšs grande variabilitĂ© des protĂ©ines de rĂ©serve du grain dont le rĂŽle est primordial dans la qualitĂ© boulangĂšre et ii) la sĂ©lection dans la descendance d’hybrides entre des blĂ©s synthĂ©tiques et des blĂ©s tendres Elite de gĂ©niteurs adaptĂ©s Ă  des conduites en intrants rĂ©duits. Ces gĂ©niteurs dont le niveau de rendement est Ă©gal ou supĂ©rieur Ă  celui des variĂ©tĂ©s actuelles en conduite ‘Faibles intrants’ prĂ©sentent un trĂšs bon niveau de rĂ©sistance aux maladies. NĂ©anmoins ils sont tardifs, hauts, sensibles Ă  la verse et ont une force boulangĂšre (W) relativement faible.Genetic improvement of crops is feasible only if breeders have at their disposal a sufficient pool of variability. In the case of bread wheat which is allohexaploid (2n=42, AABBDD), intraspecific variability has already been extensively exploited. Even if genetic progress is still possible, enlargement of variability available is crucial for breeders. Possibly, the best solution is to exploit wheat diploid progenitors and tetraploid wheats. Aegilops tauschii (2n=14, DD) is among the three progenitors the one with the highest potential. Indeed, its genome has full homology with the wheat D genome and it displays large genetic variation since it is adapted to a range of continental-type habitats.[br/] Synthetic wheats derived from hybridization between tetraploid wheats and accessions of Ae. tauschii were produced by Club5 and INRA. The objective of the project was to carry out assessment of synthetic wheats and introduce Ae. tauschii genetic diversity conferring novel traits in adapted wheats. Significant outcomes concerned i) large variability of grain storage proteins which are involved in baking quality and ii) selection in the progeny of hybrids between synthetic wheats and elite wheats of genotypes adapted to low input farming. These genotypes with a yield performance equal to or higher than check cultivars in low input farming displayed very high levels of resistance to diseases. Nevertheless they were late, tall, susceptible to lodging and had a relatively low Chopin alveograph value (W)
    corecore