443 research outputs found

    Inference of a mesoscopic population model from population spike trains

    No full text
    To understand how rich dynamics emerge in neural populations, we require models exhibiting a wide range of activity patterns while remaining interpretable in terms of connectivity and single-neuron dynamics. However, it has been challenging to fit such mechanistic spiking networks at the single neuron scale to empirical population data. To close this gap, we propose to fit such data at a meso scale, using a mechanistic but low-dimensional and hence statistically tractable model. The mesoscopic representation is obtained by approximating a population of neurons as multiple homogeneous `pools' of neurons, and modelling the dynamics of the aggregate population activity within each pool. We derive the likelihood of both single-neuron and connectivity parameters given this activity, which can then be used to either optimize parameters by gradient ascent on the log-likelihood, or to perform Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. We illustrate this approach using a model of generalized integrate-and-fire neurons for which mesoscopic dynamics have been previously derived, and show that both single-neuron and connectivity parameters can be recovered from simulated data. In particular, our inference method extracts posterior correlations between model parameters, which define parameter subsets able to reproduce the data. We compute the Bayesian posterior for combinations of parameters using MCMC sampling and investigate how the approximations inherent to a mesoscopic population model impact the accuracy of the inferred single-neuron parameters

    Resonance between Noise and Delay

    Full text link
    We propose here a stochastic binary element whose transition rate depends on its state at a fixed interval in the past. With this delayed stochastic transition this is one of the simplest dynamical models under the influence of ``noise'' and ``delay''. We demonstrate numerically and analytically that we can observe resonant phenomena between the oscillatory behavior due to noise and that due to delay.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Lett Expanded and Added Reference

    Spatial Acuity and Prey Detection in Weakly Electric Fish

    Get PDF
    It is well-known that weakly electric fish can exhibit extreme temporal acuity at the behavioral level, discriminating time intervals in the submicrosecond range. However, relatively little is known about the spatial acuity of the electrosense. Here we use a recently developed model of the electric field generated by Apteronotus leptorhynchus to study spatial acuity and small signal extraction. We show that the quality of sensory information available on the lateral body surface is highest for objects close to the fish's midbody, suggesting that spatial acuity should be highest at this location. Overall, however, this information is relatively blurry and the electrosense exhibits relatively poor acuity. Despite this apparent limitation, weakly electric fish are able to extract the minute signals generated by small prey, even in the presence of large background signals. In fact, we show that the fish's poor spatial acuity may actually enhance prey detection under some conditions. This occurs because the electric image produced by a spatially dense background is relatively “blurred” or spatially uniform. Hence, the small spatially localized prey signal “pops out” when fish motion is simulated. This shows explicitly how the back-and-forth swimming, characteristic of these fish, can be used to generate motion cues that, as in other animals, assist in the extraction of sensory information when signal-to-noise ratios are low. Our study also reveals the importance of the structure of complex electrosensory backgrounds. Whereas large-object spacing is favorable for discriminating the individual elements of a scene, small spacing can increase the fish's ability to resolve a single target object against this background

    Stochastic Resonance in Nonpotential Systems

    Get PDF
    We propose a method to analytically show the possibility for the appearance of a maximum in the signal-to-noise ratio in nonpotential systems. We apply our results to the FitzHugh-Nagumo model under a periodic external forcing, showing that the model exhibits stochastic resonance. The procedure that we follow is based on the reduction to a one-dimensional dynamics in the adiabatic limit, and in the topology of the phase space of the systems under study. Its application to other nonpotential systems is also discussed.Comment: Submitted to Phys. Rev.

    A Tool to Recover Scalar Time-Delay Systems from Experimental Time Series

    Full text link
    We propose a method that is able to analyze chaotic time series, gained from exp erimental data. The method allows to identify scalar time-delay systems. If the dynamics of the system under investigation is governed by a scalar time-delay differential equation of the form dy(t)/dt=h(y(t),y(tτ0))dy(t)/dt = h(y(t),y(t-\tau_0)), the delay time τ0\tau_0 and the functi on hh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. The method turns out to be insensitive to noise. We successfully apply the method to various time series taken from a computer experiment and two different electronic oscillators

    Noise and Periodic Modulations in Neural Excitable Media

    Get PDF
    We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural excitable medium. To this purpose, we have considered two types of modulations; namely, variations of the resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of if the system is monostable or bistable.Comment: 13 pages, RevTex, 5 PostScript figure

    Noise-induced dynamics in bistable systems with delay

    Full text link
    Noise-induced dynamics of a prototypical bistable system with delayed feedback is studied theoretically and numerically. For small noise and magnitude of the feedback, the problem is reduced to the analysis of the two-state model with transition rates depending on the earlier state of the system. In this two-state approximation, we found analytical formulae for the autocorrelation function, the power spectrum, and the linear response to a periodic perturbation. They show very good agreement with direct numerical simulations of the original Langevin equation. The power spectrum has a pronounced peak at the frequency corresponding to the inverse delay time, whose amplitude has a maximum at a certain noise level, thus demonstrating coherence resonance. The linear response to the external periodic force also has maxima at the frequencies corresponding to the inverse delay time and its harmonics.Comment: 4 pages, 4 figures, submitted to Physical Review Letter
    corecore