136 research outputs found

    Hemostatic and Inflammatory Risk Factors for Intracerebral Hemorrhage in a Pooled Cohort

    Get PDF
    To identify novel risk factors for intracerebral hemorrhagic stroke (ICH

    Stroke Incidence and Survival in American Indians, Blacks, and Whites: The Strong Heart Study and Atherosclerosis Risk in Communities Study

    Get PDF
    Background: American Indians (AIs) have high stroke morbidity and mortality. We compared stroke incidence and mortality in AIs, blacks, and whites. Methods and Results: Pooled data from 2 cardiovascular disease cohort studies included 3182 AIs from the SHS (Strong Heart Study), aged 45 to 74 years at baseline (1988–1990) and 3765 blacks and 10 413 whites from the ARIC (Atherosclerosis Risk in Communities) Study, aged 45 to 64 years at baseline (1987–1989). Stroke surveillance was based on self-report, hospital records, and death certificates. We estimated hazard ratios for incident stroke (ischemic and hemorrhagic combined) through 2008, stratified by sex and birth-year tertile, and relative risk for poststroke mortality. Incident strokes numbered 282 for AIs, 416 for blacks, and 613 for whites. For women and men, stroke incidence among AIs was similar to or lower than blacks and higher than whites. Covariate adjustment resulted in lower hazard ratios for most comparisons, but results for these models were not always statistically significant. After covariate adjustment, AI women and men had higher 30-day poststroke mortality than blacks (relative risk=2.1 [95% CI=1.0, 3.2] and 2.2 [95% CI=1.3, 3.1], respectively), and whites (relative risk=1.6 [95% CI=0.8, 2.5] and 1.7 [95% CI=1.1, 2.4]), and higher 1-year mortality (relative risk range=1.3–1.5 for all comparisons). Conclusions: Stroke incidence in AIs was lower than for blacks and higher than for whites; differences were larger for blacks and smaller for whites after covariate adjustment. Poststroke mortality was higher in AIs than blacks and whites

    Associations of NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium

    Get PDF
    Background: Stroke, the leading neurologic cause of death and disability, has a substantial genetic component. We previously conducted a genome-wide association study (GWAS) in four prospective studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and demonstrated that sequence variants near the NINJ2 gene are associated with incident ischemic stroke. Here, we sought to fine-map functional variants in the region and evaluate the contribution of rare variants to ischemic stroke risk. Methods and Results: We sequenced 196 kb around NINJ2 on chromosome 12p13 among 3,986 European ancestry participants, including 475 ischemic stroke cases, from the Atherosclerosis Risk in Communities Study, Cardiovascular Health Study, and Framingham Heart Study. Meta-analyses of single-variant tests for 425 common variants (minor allele frequency [MAF] ≥ 1%) confirmed the original GWAS results and identified an independent intronic variant, rs34166160 (MAF = 0.012), most significantly associated with incident ischemic stroke (HR = 1.80, p = 0.0003). Aggregating 278 putatively-functional variants with MAF≤ 1% using count statistics, we observed a nominally statistically significant association, with the burden of rare NINJ2 variants contributing to decreased ischemic stroke incidence (HR = 0.81; p = 0.026). Conclusion: Common and rare variants in the NINJ2 region were nominally associated with incident ischemic stroke among a subset of CHARGE participants. Allelic heterogeneity at this locus, caused by multiple rare, low frequency, and common variants with disparate effects on risk, may explain the difficulties in replicating the original GWAS results. Additional studies that take into account the complex allelic architecture at this locus are needed to confirm these findings

    Thyroid Function Within the Reference Range and the Risk of Stroke: An Individual Participant Data Analysis.

    Get PDF
    The currently applied reference ranges for thyroid function are under debate. Despite evidence that thyroid function within the reference range is related with several cardiovascular disorders, its association with the risk of stroke has not been evaluated previously. We identified studies through a systematic literature search and the Thyroid Studies Collaboration, a collaboration of prospective cohort studies. Studies measuring baseline TSH, free T4, and stroke outcomes were included, and we collected individual participant data from each study, including thyroid function measurements and incident all stroke (combined fatal and nonfatal) and fatal stroke. The applied reference range for TSH levels was between 0.45 and 4.49 mIU/L. We collected individual participant data on 43 598 adults with TSH within the reference range from 17 cohorts, with a median follow-up of 11.6 years (interquartile range 5.1-13.9), including 449 908 person-years. Age- and sex-adjusted pooled hazard ratio for TSH was 0.78 (95% confidence interval [CI] 0.65-0.95 across the reference range of TSH) for all stroke and 0.83 (95% CI 0.62-1.09) for fatal stroke. For the free T4 analyses, the hazard ratio was 1.08 (95% CI 0.99-1.15 per SD increase) for all stroke and 1.10 (95% CI 1.04-1.19) for fatal stroke. This was independent of cardiovascular risk factors including systolic blood pressure, total cholesterol, smoking, and prevalent diabetes. Higher levels of TSH within the reference range may decrease the risk of stroke, highlighting the need for further research focusing on the clinical consequences associated with differences within the reference range of thyroid function

    Predicting stroke through genetic risk functions: the CHARGE Risk Score Project.

    Get PDF
    BACKGROUND AND PURPOSE: Beyond the Framingham Stroke Risk Score, prediction of future stroke may improve with a genetic risk score (GRS) based on single-nucleotide polymorphisms associated with stroke and its risk factors. METHODS: The study includes 4 population-based cohorts with 2047 first incident strokes from 22,720 initially stroke-free European origin participants aged ≥55 years, who were followed for up to 20 years. GRSs were constructed with 324 single-nucleotide polymorphisms implicated in stroke and 9 risk factors. The association of the GRS to first incident stroke was tested using Cox regression; the GRS predictive properties were assessed with area under the curve statistics comparing the GRS with age and sex, Framingham Stroke Risk Score models, and reclassification statistics. These analyses were performed per cohort and in a meta-analysis of pooled data. Replication was sought in a case-control study of ischemic stroke. RESULTS: In the meta-analysis, adding the GRS to the Framingham Stroke Risk Score, age and sex model resulted in a significant improvement in discrimination (all stroke: Δjoint area under the curve=0.016, P=2.3×10(-6); ischemic stroke: Δjoint area under the curve=0.021, P=3.7×10(-7)), although the overall area under the curve remained low. In all the studies, there was a highly significantly improved net reclassification index (P<10(-4)). CONCLUSIONS: The single-nucleotide polymorphisms associated with stroke and its risk factors result only in a small improvement in prediction of future stroke compared with the classical epidemiological risk factors for stroke

    Association of sickle cell trait with ischemic stroke among African americans a meta-analysis

    Get PDF
    IMPORTANCE: African Americans and individuals of African ancestry have a higher risk of stroke compared with non-Hispanic white individuals. Identifying the source of this disparity could provide an opportunity for clinical stroke risk stratification and more targeted therapy. Whether sickle cell trait (SCT) is an indicator of increased risk of ischemic stroke among African Americans is still unclear. OBJECTIVE: To examine whether SCT is associated with a higher risk of incident ischemic stroke among African Americans. DESIGN, SETTING, AND PARTICIPANTS: This meta-analysis assessed the association of SCT with the risk of incident ischemic stroke. Four large, prospective, population-based studies with African American cohorts were assessed: Jackson Heart Study (September 1, 2005, through December 31, 2012), Multi-Ethnic Study of Atherosclerosis (July 1, 2002, through December 31, 2012), Reasons for Geographic and Racial Differences in Stroke (January 1, 2003, through December 31, 2014), and Women's Health Initiative (October 1, 1998, through December 31, 2012). Using a Cox proportional hazards regression model adjusted for major stroke risk factors, this study estimated the hazard ratio for incident ischemic stroke associated with SCT. Data analysis was performed from July 10, 2016, to February 2, 2017. INTERVENTIONS OR EXPOSURES: Participants' SCT status determined by polymerase chain reaction assay genotyping or a combination of whole-exome sequencing and imputation. MAIN OUTCOMES AND MEASURES Incident ischemic stroke. RESULTS: This meta-analysis included 19 464 African American individuals (1520 with SCT, 17 944 without SCT, and 620 with ischemic stroke) from 4 studies, with a mean (SD) age of 60.0 (13.0) years (5257 [27.0%] men and 14 207 [73.0%] women). No differences were found in the distribution of risk factors for ischemic stroke comparing participants with and those without SCT at study visit 1 in each cohort. The crude incidence of ischemic stroke was 2.9 per 1000 person-years (95% CI, 2.2-4.0 per 1000 person-years) among those with SCT and 3.2 per 1000 person-years (95% CI, 2.7-3.8 per 1000 person-years) among those without SCT. After stroke risk factors were adjusted for, the hazard ratio of incident ischemic stroke independently associated with SCT in the meta-analysis of all 4 cohorts was 0.80 (95% CI, 0.47-1.35; P = .82). The results of the meta-analysis were similar to those of individual cohorts, in which the results were also similar. CONCLUSIONS AND RELEVANCE: Sickle cell trait may not be associated with incidence of ischemic stroke among African Americans. The results of this study suggest performing a more thorough clinical evaluation of a stroke patient with SCT rather than assuming that SCT is the etiologic factor for the stroke

    Clonal Hematopoiesis Is Associated with Higher Risk of Stroke

    Get PDF
    Background and Purpose: Clonal hematopoiesis of indeterminate potential (CHIP) is a novel age-related risk factor for cardiovascular disease-related morbidity and mortality. The association of CHIP with risk of incident ischemic stroke was reported previously in an exploratory analysis including a small number of incident stroke cases without replication and lack of stroke subphenotyping. The purpose of this study was to discover whether CHIP is a risk factor for ischemic or hemorrhagic stroke. Methods: We utilized plasma genome sequence data of blood DNA to identify CHIP in 78 752 individuals from 8 prospective cohorts and biobanks. We then assessed the association of CHIP and commonly mutated individual CHIP driver genes (DNMT3A, TET2, and ASXL1) with any stroke, ischemic stroke, and hemorrhagic stroke. Results: CHIP was associated with an increased risk of total stroke (hazard ratio, 1.14 [95% CI, 1.03-1.27]; P=0.01) after adjustment for age, sex, and race. We observed associations with CHIP with risk of hemorrhagic stroke (hazard ratio, 1.24 [95% CI, 1.01-1.51]; P=0.04) and with small vessel ischemic stroke subtypes. In gene-specific association results, TET2 showed the strongest association with total stroke and ischemic stroke, whereas DMNT3A and TET2 were each associated with increased risk of hemorrhagic stroke. Conclusions: CHIP is associated with an increased risk of stroke, particularly with hemorrhagic and small vessel ischemic stroke. Future studies clarifying the relationship between CHIP and subtypes of stroke are needed

    Chronic neuropsychiatric sequelae of SARS‐CoV‐2: Protocol and methods from the Alzheimer's Association Global Consortium

    Get PDF
    Introduction Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection

    Association of Sickle Cell Trait With Incidence of Coronary Heart Disease Among African American Individuals

    Get PDF
    Importance: The incidence of and mortality from coronary heart disease (CHD) are substantially higher among African American individuals compared with non-Hispanic White individuals, even after adjusting for traditional factors associated with CHD. The unexplained excess risk might be due to genetic factors related to African ancestry that are associated with a higher risk of CHD, such as the heterozygous state for the sickle cell variant or sickle cell trait (SCT). Objective: To evaluate whether there is an association between SCT and the incidence of myocardial infarction (MI) or composite CHD outcomes in African American individuals. Design, Setting, and Participants: This cohort study included 5 large, prospective, population-based cohorts of African American individuals in the Women's Health Initiative (WHI) study, the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, the Multi-Ethnic Study of Atherosclerosis (MESA), the Jackson Heart Study (JHS), and the Atherosclerosis Risk in Communities (ARIC) study. The follow-up periods included in this study were 1993 and 1998 to 2014 for the WHI study, 2003 to 2014 for the REGARDS study, 2002 to 2016 for the MESA, 2002 to 2015 for the JHS, and 1987 to 2016 for the ARIC study. Data analysis began in October 2013 and was completed in October 2020. Exposures: Sickle cell trait status was evaluated by either direct genotyping or high-quality imputation of rs334 (the sickle cell variant). Participants with sickle cell disease and those with a history of CHD were excluded from the analyses. Main Outcomes and Measures: Incident MI, defined as adjudicated nonfatal or fatal MI, and incident CHD, defined as adjudicated nonfatal MI, fatal MI, coronary revascularization procedures, or death due to CHD. Cox proportional hazards regression models were used to estimate the hazard ratio for incident MI or CHD comparing SCT carriers with noncarriers. Models were adjusted for age, sex (except for the WHI study), study site or region of residence, hypertension status or systolic blood pressure, type 1 or 2 diabetes, serum high-density lipoprotein level, total cholesterol level, and global ancestry (estimated from principal components analysis). Results: A total of 23 197 African American men (29.8%) and women (70.2%) were included in the combined sample, of whom 1781 had SCT (7.7% prevalence). Mean (SD) ages at baseline were 61.2 (6.9) years in the WHI study (n = 5904), 64.0 (9.3) years in the REGARDS study (n = 10 714), 62.0 (10.0) years in the MESA (n = 1556), 50.3 (12.0) years in the JHS (n = 2175), and 53.2 (5.8) years in the ARIC study (n = 2848). There were no significant differences in the distribution of traditional factors associated with cardiovascular disease by SCT status within cohorts. A combined total of 1034 participants (76 with SCT) had incident MI, and 1714 (137 with SCT) had the composite CHD outcome. The meta-analyzed crude incidence rate of MI did not differ by SCT status and was 3.8 per 1000 person-years (95% CI, 3.3-4.5 per 1000 person-years) among those with SCT and 3.6 per 1000 person-years (95% CI, 2.7-5.1 per 1000 person-years) among those without SCT. For the composite CHD outcome, these rates were 7.3 per 1000 person-years (95% CI, 5.5-9.7 per 1000 person-years) among those with SCT and 6.0 per 1000 person-years (95% CI, 4.9-7.4 per 1000 person-years) among those without SCT. Meta-analysis of the 5 study results showed that SCT status was not significantly associated with MI (hazard ratio, 1.03; 95% CI, 0.81-1.32) or the composite CHD outcome (hazard ratio, 1.16; 95% CI, 0.92-1.47). Conclusions and Relevance: In this cohort study, there was not an association between SCT and increased risk of MI or CHD in African American individuals. These disorders may not be associated with sickle cell trait-related sudden death in this population

    Serum magnesium and calcium levels in relation to ischemic stroke : Mendelian randomization study

    Get PDF
    ObjectiveTo determine whether serum magnesium and calcium concentrations are causally associated with ischemic stroke or any of its subtypes using the mendelian randomization approach.MethodsAnalyses were conducted using summary statistics data for 13 single-nucleotide polymorphisms robustly associated with serum magnesium (n = 6) or serum calcium (n = 7) concentrations. The corresponding data for ischemic stroke were obtained from the MEGASTROKE consortium (34,217 cases and 404,630 noncases).ResultsIn standard mendelian randomization analysis, the odds ratios for each 0.1 mmol/L (about 1 SD) increase in genetically predicted serum magnesium concentrations were 0.78 (95% confidence interval [CI] 0.69-0.89; p = 1.3 7 10-4) for all ischemic stroke, 0.63 (95% CI 0.50-0.80; p = 1.6 7 10-4) for cardioembolic stroke, and 0.60 (95% CI 0.44-0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67-1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88-1.21) or with any subtype.ConclusionsThis study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype
    corecore