20 research outputs found

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe

    Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health

    Get PDF
    The composition of the air we breathe is determined by emissions, weather, and photochemical transformations induced by solar UV radiation. Photochemical reactions of many emitted chemical compounds can generate important (secondary) pollutants including ground-level ozone (O 3 ) and some particulate matter, known to be detrimental to human health and ecosystems. Poor air quality is the major environmental cause of premature deaths globally, and even a small decrease in air quality can translate into a large increase in the number of deaths. In many regions of the globe, changes in emissions of pollutants have caused significant changes in air quality. Short-term variability in the weather as well as long-term climatic trends can affect ground-level pollution through several mechanisms. These include large-scale changes in the transport of O 3 from the stratosphere to the troposphere, winds, clouds, and patterns of precipitation. Long-term trends in UV radiation, particularly related to the depletion and recovery of stratospheric ozone, are also expected to result in changes in air quality as well as the self-cleaning capacity of the global atmosphere. The increased use of substitutes for ozone-depleting substances, in response to the Montreal Protocol, does not currently pose a significant risk to the environment. This includes both the direct emissions of substitutes during use and their atmospheric degradation products (e.g. trifluoroacetic acid, TFA)

    Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health

    Get PDF
    UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels

    Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols

    No full text
    Trifluoroacetic acid (TFA) is a breakdown product of several hydrochlorofluorocarbons (HCFC), regulated under the Montreal Protocol (MP), and hydrofluorocarbons (HFC) used mainly as refrigerants. Trifluoroacetic acid is (1) produced naturally and synthetically, (2) used in the chemical industry, and (3) a potential environmental breakdown product of a large number (>1 million) chemicals, including pharmaceuticals, pesticides, and polymers. The contribution of these chemicals to global amounts of TFA is uncertain, in contrast to that from HCFC and HFC regulated under the MP. TFA salts are stable in the environment and accumulate in terminal sinks such as playas, salt lakes, and oceans, where the only process for loss of water is evaporation. Total contribution to existing amounts of TFA in the oceans as a result of the continued use of HCFCs, HFCs, and hydrofluoroolefines (HFOs) up to 2050 is estimated to be a small fraction (<7.5%) of the approximately 0.2 µg acid equivalents/L estimated to be present at the start of the millennium. As an acid or as a salt TFA is low to moderately toxic to a range of organisms. Based on current projections of future use of HCFCs and HFCs, the amount of TFA formed in the troposphere from substances regulated under the MP is too small to be a risk to the health of humans and environment. However, the formation of TFA derived from degradation of HCFC and HFC warrants continued attention, in part because of a long environmental lifetime and due many other potential but highly uncertain sources

    Regulatory Science Education: The Need for Generalization

    No full text
    Ever since the beginning of regulatory science, the need for relevant education has been recognized. However, after the Food and Drug Administration (FDA) officially recognized regulatory science, several universities have developed educational programs. This paper provides the results of a study to evaluate the existing education programs on regulatory science. The study identifies the generic definition of regulatory science, consisting of applied version of various scientific disciplines used in the regulatory process. The study found that the educational programs in regulatory science largely dealt with compliance with FDA regulations. In many cases, the programs used the term "regulatory affairs" to describe the regulations and how to comply with them. Based on the experience at Georgetown University, the study provides an outline for regulatory science education. The proposed educational program consists of: 1) approximately 10 topics that are relevant to most, if not all, regulatory science disciplines; 2) a summary of various regulatory science disciplines; and 3) education in specific regulatory science disciplines. https://doi.org/10.21423/jrs-v08moghiss

    Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011

    Get PDF
    The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015

    Environmental Effects and Interactions of Stratospheric Ozone Depletion, UV Radiation, and Climate Change. 2018 Assessment Report

    Get PDF
    Executive Summary: Thirty-four years ago, an unprecedented thinning of stratospheric ozone was reported over Antarctica.The risk of a consequent increase in exposure to solar UV-B radiation (UV-B; wavelengths 280-315 nm) raised concerns about potentially disastrous effects on human health and the Earth\u27s environment. In response, the international community mobilised and worked together to understand the causes and find a solution to this dramatic change in the Earth\u27s atmosphere. In 1985, the Vienna Convention for the Protection of the Ozone Layer was signed, which provided the framework for the Montreal Protocol on Substances that Deplete the Ozone Layer, signed in 1987. In these international agreements, the United Nations recognised the fundamental importance of stopping and reversing ozone depletion and preventing its damaging effects. The Montreal Protocol, with its subsequent Amendments and Adjustments, was negotiated to control the consumption and production of anthropogenic ozone-depleting substances. The Parties to the Montreal Protocol base their decisions on scientific, environmental, technical, and economic information provided by three Assessment Panels ..
    corecore