21 research outputs found

    Generation of Intense High-Order Vortex Harmonics

    Full text link
    This paper presents the method for the first time to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region. In three-dimensional particle-in-cell simulation, both the reflected and transmitted light beams include high-order harmonics of the Laguerre-Gaussian (LG) mode when a linearly polarized LG laser pulse impinges on a solid foil. The mode of the generated LG harmonic scales with its order, in good agreement with our theoretical analysis. The intensity of the generated high-order vortex harmonics is close to the relativistic region, and the pulse duration can be in attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. Thus, the obtained intense vortex beam may have extraordinarily promising applications for high-capacity quantum information and for high-resolution detection in both spatial and temporal scales because of the addition of a new degree of freedom

    Proton Acceleration in Underdense Plasma by Ultraintense Laguerre-Gaussian Laser Pulse

    Full text link
    Three-dimensional particle-in-cell simulation is used to investigate the witness proton acceleration in underdense plasma with a short intense Laguerre-Gaussian (LG) laser pulse. Driven by the LG10 laser pulse, a special bubble with an electron pillar on the axis is formed, in which protons can be well-confined by the generated transversal focusing field and accelerated by the longitudinal wakefield. The risk of scattering prior to acceleration with a Gaussian laser pulse in underdense plasma is avoided, and protons are accelerated stably to much higher energy. In simulation, a proton beam has been accelerated to 7 GeV from 1 GeV in underdense tritium plasma driven by a 2.14x1022 W/cm2 LG10 laser pulse

    Dietary licorice flavonoids powder improves serum antioxidant capacity and immune organ inflammatory responses in weaned piglets

    Get PDF
    Weaning often induces oxidative stress and inflammatory response in piglets. This study investigated the effects of dietary licorice flavonoids powder (LFP) supplementation on antioxidant capacity and immunity in weaned piglets. Notably, 96 Landrace × Yorkshire × Duroc (DLY) weaned piglets were randomly allocated to four treatments with 6 replicates (4 animals per replicate) and fed with diet supplementation with 0, 50, 150, and 250 mg/kg LFP, respectively. The trial lasted for 5 weeks. The results showed that dietary LFP supplementation effectively increased the liver index (P < 0.05). In addition, dietary LFP supplementation reduced serum aspartate aminotransferase activity (P < 0.01). Piglets fed with 50 mg/kg LFP decreased total cholesterol and HDL-C content in serum (P < 0.05) and increased serum alkaline phosphatase activity (P < 0.01). Similarly, supplementation with 150 mg/kg LFP elevated the activity of total antioxidant capability (T-AOC) in serum (P < 0.01) and dietary with 150 and 250 mg/kg LFP increased T-AOC activity in spleen (P < 0.01). Moreover, dietary with 150 mg/kg LFP addition enhanced (P < 0.05) the serum IgG content of piglets. Additionally, compared with the control group, dietary 250 mg/kg LFP supplementation upregulated (P < 0.05) the mRNA abundance of Interleukin (IL)-1β and monocyte chemoattractant protein 1 (MCP-1) in the spleen. Meanwhile, dietary 150 and 250 mg/kg LFP supplementation downregulated (P < 0.05) mRNA abundance of IL-10, and MCP-1 and 250 mg/kg LFP upregulated (P < 0.05) the expression of intercellular adhesion molecule 1 (ICAM-1), IL-1β, IL-6, and tumor necrosis factor α (TNF-α) in the thymus. In conclusion, LFP supplementation improved the immune function of piglets by regulating the activity of serum biochemical enzymes, improving the antioxidant capacity, and alleviating inflammation of immune organs. This study indicated that LFP is potential alternative protection against early weaned stress in piglets

    Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress

    No full text
    Abstract Background The skeletal muscle of pigs is vulnerable to oxidative damage, resulting in growth retardation. Selenoproteins are important components of antioxidant systems for animals, which are generally regulated by dietary selenium (Se) level. Here, we developed the dietary oxidative stress (DOS)-inducing pig model to investigate the protective effects of selenoproteins on DOS-induced skeletal muscle growth retardation. Results Dietary oxidative stress caused porcine skeletal muscle oxidative damage and growth retardation, which is accompanied by mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and protein and lipid metabolism disorders. Supplementation with Se (0.3, 0.6 or 0.9 mg Se/kg) in form of hydroxy selenomethionine (OH-SeMet) linearly increased muscular Se deposition and exhibited protective effects via regulating the expression of selenotranscriptome and key selenoproteins, which was mainly reflected in lower ROS levels and higher antioxidant capacity in skeletal muscle, and the mitigation of mitochondrial dysfunction and ER stress. What's more, selenoproteins inhibited DOS induced protein and lipid degradation and improved protein and lipid biosynthesis via regulating AKT/mTOR/S6K1 and AMPK/SREBP-1 signalling pathways in skeletal muscle. However, several parameters such as the activity of GSH-Px and T-SOD, the protein abundance of JNK2, CLPP, SELENOS and SELENOF did not show dose-dependent changes. Notably, several key selenoproteins such as MSRB1, SELENOW, SELENOM, SELENON and SELENOS play the unique roles during this protection. Conclusions Increased expression of selenoproteins by dietary OH-SeMet could synergistically alleviate mitochondrial dysfunction and ER stress, recover protein and lipid biosynthesis, thus alleviate skeletal muscle growth retardation. Our study provides preventive measure for OS-dependent skeletal muscle retardation in livestock husbandry

    Pancreatic atrophy caused by dietary selenium deficiency induces hypoinsulinemic hyperglycemia via global down-regulation of selenoprotein encoding genes in broilers - Fig 4

    No full text
    <p><b>Effects of dietary Se deficiency on relative mRNA levels of the selenoprotein encoding genes in liver (A), muscle (B) and pancreas (C) of chickens compared with those fed the control diet at fifth week</b>. Data are presented as means ± SE (<i>n</i> = 6). Asterisks indicate different from control: *<i>P</i> < 0.05, **<i>P</i> < 0.01.</p

    Pancreatic atrophy caused by dietary selenium deficiency induces hypoinsulinemic hyperglycemia via global down-regulation of selenoprotein encoding genes in broilers - Fig 4

    No full text
    <p><b>Effects of dietary Se deficiency on relative mRNA levels of the selenoprotein encoding genes in liver (A), muscle (B) and pancreas (C) of chickens compared with those fed the control diet at fifth week</b>. Data are presented as means ± SE (<i>n</i> = 6). Asterisks indicate different from control: *<i>P</i> < 0.05, **<i>P</i> < 0.01.</p

    Hydroxy Selenomethionine Alleviates Hepatic Lipid Metabolism Disorder of Pigs Induced by Dietary Oxidative Stress via Relieving the Endoplasmic Reticulum Stress

    No full text
    This study used 40 castrated male pigs to determine the protective effects of a new selenium molecule (hydroxy selenomethionine, OH-SeMet) on dietary oxidative stress (DOS) induced hepatic lipid metabolism disorder, and corresponding response of selenotranscriptome. The pigs were randomly grouped into 5 dietary treatments and fed a basal diet formulated with either normal corn and oils or oxidized diet in which the normal corn and oils were replaced by aged corn and oxidized oils, and supplemented with OH-SeMet at 0.0, 0.3, 0.6 and 0.9 mg Se/kg for a period of 16 weeks (n = 8). The results showed that DOS induced liver damage, increased serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels, decreased serum triacylglycerol (TG) level, suppressed antioxidant capacity in the liver, and changed lipid metabolism enzyme activity, thus causing lipid metabolism disorder in the liver. The DOS-induced lipid metabolism disorder was accompanied with endoplasmic reticulum (ER) stress, changes in lipid metabolism-related genes and selenotranscriptome in the liver. Dietary Se supplementation partially alleviated the negative impact of DOS on the lipid metabolism. These improvements were accompanied by increases in Se concentration, liver index, anti-oxidative capacity, selenotranscriptome especially 11 selenoprotein-encoding genes, and protein abundance of GPX1, GPX4 and SelS in the liver, as well as the decrease in SelF abundance. The Se supplementation also alleviated ER stress, restored liver lipid metabolism enzyme activity, increased the mRNA expression of lipid synthesis-related genes, and decreased the mRNA levels of lipidolysis-related genes. In conclusion, the dietary Se supplementation restored antioxidant capacity and mitigated ER stress induced by DOS, thus resisting hepatic lipid metabolism disorders that are associated with regulation of selenotranscriptome
    corecore