28 research outputs found
miR-21: an oncomir on strike in prostate cancer
<p>Abstract</p> <p>Background</p> <p>Aberrant expression of microRNAs, small non-coding RNA molecules that post-transcriptionally repress gene expression, seems to be causatively linked to the pathogenesis of cancer. In this context, miR-21 was found to be overexpressed in different human cancers (e.g. glioblastoma, breast cancer). In addition, it is thought to be endowed with oncogenic properties due to its ability to negatively modulate the expression of tumor-suppressor genes (e.g. <it>PTEN</it>) and to cause the reversion of malignant phenotype when knocked- down in several tumor models. On the basis of these findings, miR-21 has been proposed as a widely exploitable cancer-related target. However, scanty information is available concerning the relevance of miR-21 for prostate cancer. In the present study, we investigated the role of miR-21 and its potential as a therapeutic target in two prostate cancer cell lines, characterized by different miR-21 expression levels and <it>PTEN </it>gene status.</p> <p>Results</p> <p>We provide evidence that miR-21 knockdown in prostate cancer cells is not sufficient <it>per se </it>i) to affect the proliferative and invasive potential or the chemo- and radiosensitivity profiles or ii) to modulate the expression of the tumor-suppressors PTEN and Pdcd4, which in other tumor types were found to be regulated by miR-21. We also show that miR-21 is not differently expressed in carcinomas and matched normal tissues obtained from 36 untreated prostate cancer patients subjected to radical prostatectomy.</p> <p>Conclusions</p> <p>Overall, our data suggest that miR-21 is not a central player in the onset of prostate cancer and that its single hitting is not a valuable therapeutic strategy in the disease. This supports the notion that the oncogenic properties of miR-21 could be cell and tissue dependent and that the potential role of a given miRNA as a therapeutic target should be contextualized with respect to the disease.</p
COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context
Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
Differential effects of the MEK inhibitor SL327 on the acquisition and expression of ethanol-elicited conditioned place preference and aversion in mice
The involvement of mitogen-activating extracellular kinase (MEK) in place conditioning may vary depending on the motivational sign (positive or negative) and nature (pharmacological or nociceptive) of the unconditioned stimulus (US) and on the phase (acquisition or expression) of the learning process. This study investigated the role of MEK on the acquisition and expression of ethanol-elicited (given 2 g/kg) backward (preference, CPP) and forward (aversion, CPA) place conditioning. The MEK inhibitor SL327 (50 mg/kg for CPP, and 50 and 100 mg/kg for CPA) was administered to CD-1 mice 60 minutes before an ethanol dose (acquisition) or 60 minutes before the post-conditioning tests (expression). Ethanol significantly elicited CPP and CPA; SL327 (50 mg/kg) significantly blocked the acquisition of ethanol-elicited CPP, but not that of CPA. Moreover, SL327 (50 and 100 mg/kg) significantly reduced the expression of ethanol-elicited CPP, but not that of CPA. Finally, SL327 also prevented ethanol-elicited (given 2 g/kg) increases of phosphorylated extracellular signal regulated kinase (pERK)-positive neurons in the nucleus accumbens and other nuclei of the extended amygdala. Overall, these results confirmed the differential involvement of MEK in the acquisition and expression of drug-elicited place conditioning and suggested its differential involvement in distinct behavioral outcomes, depending on the motivational sign of the (same) US and on the significance of the experimental phase of the learning process
Role of dopamine D<sub>1</sub> receptors and extracellular signal regulated kinase in the motivational properties of acetaldehyde as assessed by place preference conditioning
Background: The role of dopamine D1 receptors and Extracellular signal Regulated Kinase
(ERK) in the motivational properties of drugs can be studied by place-conditioning. Recent advances have shown that the motivational properties of ethanol, determined by place-conditioning, are mediated by its metabolic conversion into acetaldehyde. To date, the role of D1 receptors and ERK activation in acetaldehyde-elicited place preference has not been determined. The aim of this study was to assess the role of D1 receptors blockade and MEK inhibition in the acquisition of
acetaldehyde-elicited conditioned place preference.
Methods: Male Sprague–Dawley rats were subjected to repeated pairings with 1 compartment of the conditioning apparatus immediately following acetaldehyde (20 mg ⁄ kg i.g.) or ethanol (1 g ⁄ kg i.g.) administration. The D1 receptor antagonist, SCH 39166 (50 μg ⁄ kg s.c.), was administered 10 minutes before acetaldehyde or ethanol administration. In order to study the role of activated ERK in the acetaldehyde-elicited place preference, rats were administered the MEK inhibitor, PD98059 (1, 30, and 90 μg i.c.v.), 10 or 30 minutes before acetaldehyde. To verify the specificity of these effects, we also studied whether PD98059 pretreatment could affect morphine (1 mg/kg s.c.)-elicited place preference.
Results: Both acetaldehyde and ethanol elicited significant place preferences and these were prevented by pretreatment with SCH 39166. In addition, pretreatment with PD98059, dose- (30 and 90 but not 1 μg i.c.v.) and time- (10 but not 30 minutes before) dependently, prevented the
acquisition of acetaldehyde- and significantly reduced the acquisition of morphine-elicited conditioned place preference.
Conclusions: These results confirm that acetaldehyde and ethanol elicit conditioned place preference
and demonstrate that D1 receptors are critically involved in these effects. Furthermore, the finding that PD98059 prevents the acquisition of acetaldehyde-elicited conditioned place preference highlights the importance of the D1 receptors–ERK pathway in its motivational effects
Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson's disease
Mucuna pruriens (MP) has long been used in Indian traditional medicine as support in the treatment of Parkinson's disease. However, no systematic preclinical studies that aimed at evaluating the efficacy of this substance are available to date. This study undertook an extensive evaluation of the antiparkinsonian effects of an extract of MP seeds known to contain, among other components, 12.5% L: -dihydroxyphenylalanine (L: -DOPA), as compared to equivalent doses of L: -DOPA. Moreover, the neuroprotective efficacy of MP and its potential rewarding effects were evaluated. The results obtained reveal how an acute administration of MP extract at a dose of 16 mg/kg (containing 2 mg/kg of L: -DOPA) consistently antagonized the deficit in latency of step initiation and adjusting step induced by a unilateral 6-hydroxydopamine lesion, whereas L: -DOPA was equally effective only at the doses of 6 mg/kg. At the same dosage, MP significantly improved the placement of the forelimb in vibrissae-evoked forelimb placing, suggesting a significant antagonistic activity on both motor and sensory-motor deficits. The effects of MP extract were moreover investigated by means of the turning behavior test and in the induction of abnormal involuntary movements (AIMs) after either acute or subchronic administration. MP extract acutely induced a significantly higher contralateral turning behavior than L: -DOPA (6 mg/kg) when administered at a dose of 48 mg/kg containing 6 mg/kg of L: -DOPA. On subchronic administration, both MP extract (48 mg/kg) and L: -DOPA (6 mg/kg) induced sensitization of contralateral turning behavior; however, L: -DOPA alone induced a concomitant sensitization in AIMs suggesting that the dyskinetic potential of MP is lower than that of L: -DOPA. MP (48 mg/kg) was also effective in antagonizing tremulous jaw movements induced by tacrine, a validated test reproducing parkinsonian tremor. Furthermore, MP induced no compartment preference in the place preference test, indicating the lack of components characterized by rewarding effects in the extract. Finally, in a subchronic mice model of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced dopamine neuron degeneration, MP extract did not prove capable of preventing either tyrosine hydroxylase decrease induced by MPTP or astroglial or microglial activation as assessed by means of GFAP and CD11b immunohistochemistry, supporting the absence of neuroprotective effects by MP. Characterization MP extract strongly supports its antiparkinsonian activit
Ethanol-induced extracellular signal regulated kinase: role of dopamine D1 receptors
BACKGROUND: Addictive drugs activate extracellular signal regulated kinase (ERK) in brain regions critically involved in their affective and motivational properties. The aim of this study was to demonstrate the ethanol-induced activation of ERK in the nucleus accumbens (Acb) and in the extended amygdala [bed nucleus of the stria terminalis lateralis (BSTL) and central nucleus of the amygdala (CeA)] and to highlight the role of dopamine (DA) D(1) receptors in these effects. METHODS: Ethanol (0.5, 1, and 2 g/kg) was administered by gavage and ERK phosphorylation was determined in the nucleus Acb (shell and core), BSTL, and CeA by immunohistochemistry. The DA D(1) receptor antagonist, SCH 39166 (SCH) (50 microg/kg), was administered 10 minutes before ethanol (1 g/kg). RESULTS: Quantitative microscopic examination showed that ethanol, dose-dependently increased phospho-ERK immunoreactivity (optical and neuronal densities) in the shell and core of nucleus Acb, BSTL, and CeA. Pretreatment with SCH fully prevented the increases elicited by ethanol (1 g/kg) in all brain regions studied. CONCLUSIONS: The results of this study indicate that ethanol, similar to other addictive drugs, activates ERK in nucleus Acb and extended amygdala via a DA D(1) receptor-mediated mechanism. Overall, these results suggest that the D(1) receptors/ERK pathway may play a critical role in the motivational properties of ethanol
Role of dopamine D1 receptors and extracellular signal regulated kinase in the motivational properties of acetaldehyde as assessed by place preference conditioning
Background: The role of dopamine D1 receptors and Extracellular signal Regulated Kinase (ERK) in the motivational properties of drugs can be studied by place-conditioning. Recent advances have shown that the motivational properties of ethanol, determined by place-conditioning, are mediated by its metabolic conversion into acetaldehyde. To date, the role of D1 receptors and ERK activation in acetaldehyde-elicited place preference has not been determined. The aim of this study was to assess the role of D1 receptors blockade and MEK inhibition in the acquisition of acetaldehyde- elicited conditioned place preference. Methods: Male Sprague-Dawley rats were subjected to repeated pairings with 1 compartment of the conditioning apparatus immediately following acetaldehyde (20 mg/kg i.g.) or ethanol (1 g/kg i.g.) administration. The D1 receptor antagonist, SCH 39166 (50 μg/kg s.c.), was administered 10 minutes before acetaldehyde or ethanol administration. In order to study the role of activated ERK in the acetaldehyde-elicited place preference, rats were administered the MEK inhibitor, PD98059 (1, 30, and 90 μg i.c.v.), 10 or 30 minutes before acetaldehyde. To verify the specificity of these effects, we also studied whether PD98059 pretreatment could affect morphine (1 mg/kg s.c.)-elicited place preference. Results: Both acetaldehyde and ethanol elicited significant place preferences and these were prevented by pretreatment with SCH 39166. In addition, pretreatment with PD98059, dose (30 and 90 but not 1 μg i.c.v.) and time (10 but not 30 minutes before) dependently, prevented the acquisition of acetaldehyde- and significantly reduced the acquisition of morphine-elicited conditioned place preference. Conclusions: These results confirm that acetaldehyde and ethanol elicit conditioned place preference and demonstrate that D1 receptors are critically involved in these effects. Furthermore, the finding that PD98059 prevents the acquisition of acetaldehyde-elicited conditioned place preference highlights the importance of the D1 receptor-ERK pathway in its motivational effects
Withania somnifera prevents acquisition and expression of morphine-elicited conditioned place preference
Previous studies have reported that some of the central effects of morphine are counteracted by the administration of the methanolic extract of the root of Indian ginseng, Withania somnifera Dunal (WSE). The present study sought to determine whether WSE affects acquisition and expression of morphine-elicited conditioned place preference (CPP) in CD-1 mice. In CPP acquisition experiments, WSE (0, 25, 50, and 100 mg/kg) was administered, during conditioning, 30 min before morphine (10 mg/kg), whereas in expression experiments, WSE (0, 25, 50, and 100 mg/kg) was administered 30 min before the postconditioning test. The results demonstrate (i) that WSE was devoid of motivational properties; (ii) that WSE (100 mg/kg) was devoid of effects on spontaneous and morphine-stimulated motor activity and on spatial memory; and (iii) that WSE (50 and 100 mg/kg) significantly prevented the acquisition and expression of CPP. Further, to characterize the receptor(s) involved in these effects, we studied, by receptor-binding assay, the affinity of WSE for μ-opioid and γ-aminobutyric acid B receptors. These experiments revealed a higher affinity of WSE for γ-aminobutyric acid B than for μ-opioid receptors. Overall, these results point to WSE as an interesting alternative tool, worthy of further investigation, to study opiate addictio