7 research outputs found

    Daily leucine intake is positively associated with lower limb skeletal muscle mass and strength in the elderly.

    Get PDF
    Higher daily protein intake, with an emphasis on leucine content, is thought to mitigate age-related anabolic resistance, potentially counteracting age-related morphological and functional declines. The present study investigated potential associations between total daily leucine intake and dependent variables, including quadriceps muscle cross-sectional area (CSA) and maximum dynamic muscle strength (1-RM) in a cohort of healthy free-living older individuals of both sexes (n = 67; 34/33 men/women). Participants performed three 24-hour dietary recalls and underwent a magnetic resonance imaging exam followed by 1-RM tests. Our results demonstrate moderate associations between total daily leucine and both quadriceps CSA (r = 0.42; p = 0.004) and 1-RM (r = 0.45; p = 0.001). Furthermore, our exploratory biphasic linear regression analyses, adjusted for sex, age, and protein intake relative to body weight, revealed a plateau for daily leucine intake and muscle mass and muscle strength (around 7.6–8.0 g/day−1) in older adults. In conclusion, we demonstrated that total daily leucine intake is associated with muscle mass and strength in healthy older individuals and this association remains after controlling for multiple factors, including overall protein intake. Furthermore, our breakpoint analysis revealed non-linearities and a potential threshold for habitual leucine intake, which may help guide future research on the effects of chronic leucine intake in age-related muscle loss

    Muscle strength and muscle mass as predictors of hospital length of stay in patients with moderate to severe COVID‐19: a prospective observational study.

    Get PDF
    Background: Strength and muscle mass are predictors of relevant clinical outcomes in critically ill patients, but in hospitalized patients with COVID-19, it remains to be determined. In this prospective observational study, we investigated whether muscle strength or muscle mass are predictive of hospital length of stay (LOS) in patients with moderate to severe COVID-19 patients. Methods: We evaluated prospectively 196 patients at hospital admission for muscle mass and strength. Ten patients did not test positive for SARS-CoV-2 during hospitalization and were excluded from the analyses. Results: The sample comprised patients of both sexes (50% male) with a mean age (SD) of 59 (±15) years, body mass index of 29.5 (±6.9) kg/m2. The prevalence of current smoking patients was 24.7%, and more prevalent coexisting conditions were hypertension (67.7%), obesity (40.9%), and type 2 diabetes (36.0%). Mean (SD) LOS was 8.6 days (7.7); 17.0% of the patients required intensive care; 3.8% used invasive mechanical ventilation; and 6.6% died during the hospitalization period. The crude hazard ratio (HR) for LOS was greatest for handgrip strength comparing the strongest versus other patients (1.47 [95% CI: 1.07–2.03; P = 0.019]). Evidence of an association between increased handgrip strength and shorter hospital stay was also identified when handgrip strength was standardized according to the sex-specific mean and standard deviation (1.23 [95% CI: 1.06–1.43; P = 0.007]). Mean LOS was shorter for the strongest patients (7.5 ± 6.1 days) versus others (9.2 ± 8.4 days). Evidence of associations were also present for vastus lateralis cross-sectional area. The crude HR identified shorter hospital stay for patients with greater sex-specific standardized values (1.20 [95% CI: 1.03–1.39; P = 0.016]). Evidence was also obtained associating longer hospital stays for patients with the lowest values for vastus lateralis cross-sectional area (0.63 [95% CI: 0.46–0.88; P = 0.006). Mean LOS for the patients with the lowest muscle cross-sectional area was longer (10.8 ± 8.8 days) versus others (7.7 ± 7.2 days). The magnitude of associations for handgrip strength and vastus lateralis cross-sectional area remained consistent and statistically significant after adjusting for other covariates. Conclusions: Muscle strength and mass assessed upon hospital admission are predictors of LOS in patients with moderate to severe COVID-19, which stresses the value of muscle health in prognosis of this disease

    Supplemental Figure S1. Direct acyclic graph of the association between invasive mechanical ventilation and cardiorespiratory abnormalities.

    No full text
    BMI: body mass index; PAL: physical activity levels; LoS: length of stay.</p

    Timing of Creatine Supplementation around Exercise: A Real Concern?

    No full text
    Creatine has been considered an effective ergogenic aid for several decades; it can help athletes engaged in a variety of sports and obtain performance gains. Creatine supplementation increases muscle creatine stores; several factors have been identified that may modify the intramuscular increase and subsequent performance benefits, including baseline muscle Cr content, type II muscle fibre content and size, habitual dietary intake of Cr, aging, and exercise. Timing of creatine supplementation in relation to exercise has recently been proposed as an important consideration to optimise muscle loading and performance gains, although current consensus is lacking regarding the ideal ingestion time. Research has shifted towards comparing creatine supplementation strategies pre-, during-, or post-exercise. Emerging evidence suggests greater benefits when creatine is consumed after exercise compared to pre-exercise, although methodological limitations currently preclude solid conclusions. Furthermore, physiological and mechanistic data are lacking, in regard to claims that the timing of creatine supplementation around exercise moderates gains in muscle creatine and exercise performance. This review discusses novel scientific evidence on the timing of creatine intake, the possible mechanisms that may be involved, and whether the timing of creatine supplementation around exercise is truly a real concern

    The Next Generation Virgo Cluster Survey. XVII. A Search for Planetary Nebulae in Virgo Cluster Globular Clusters

    No full text
    International audienceThe occurrence of planetary nebulae (PNe) in globular clusters (GCs) provides an excellent chance to study low-mass stellar evolution in a special (low-metallicity, high stellar density) environment. We report a systematic spectroscopic survey for the [O III] 5007 Å emission line of PNe in 1469 Virgo GCs and 121 Virgo ultra-compact dwarfs (UCDs), mainly hosted in the giant elliptical galaxies M87, M49, M86, and M84. We detected zero PNe in our UCD sample and discovered one PN ({M}5007=-4.1 {mag}) associated with an M87 GC. We used the [O III] detection limit for each GC to estimate the luminosity-specific frequency of PNe, α, and measured α in the Virgo cluster GCs to be α ∌ {3.9}-0.7+5.2× {10}-8 {PN}/{L}⊙ . The value of α in the Virgo GCs is among the lowest reported in any environment, due in part to the large sample size, and it is 5-6 times lower than that for the Galactic GCs. We suggest that α decreases toward brighter and more massive clusters, sharing a similar trend as the binary fraction, and the discrepancy between the Virgo and Galactic GCs can be explained by the observational bias in extragalactic surveys toward brighter GCs. This low but nonzero efficiency in forming PNe may highlight the important role played by binary interactions in forming PNe in GCs. We argue that a future survey of less massive Virgo GCs will be able to determine whether PN production in the Virgo GCs is governed by an internal process (mass, density, binary fraction) or if it is largely regulated by the external environment
    corecore