16,633 research outputs found

    Group Cohomology, Modular Theory and Space-time Symmetries

    Get PDF
    The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic sufficient criterion for the existence of a covariant action of the (universal covering of) the Poincar\'e group. In particular this gives, together with our previous results, an intrinsic characterization of positive-energy conformal pre-cosheaves of von Neumann algebras. To this end we adapt to our use Moore theory of central extensions of locally compact groups by polish groups, selecting and making an analysis of a wider class of extensions with natural measurable properties and showing henceforth that the universal covering of the Poincar\'e group has only trivial central extensions (vanishing of the first and second order cohomology) within our class.Comment: 18 pages, plain TeX, preprint Roma Tor vergata n. 20 dec. 9

    How to add a boundary condition

    Full text link
    Given a conformal QFT local net of von Neumann algebras B_2 on the two-dimensional Minkowski spacetime with irreducible subnet A\otimes\A, where A is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to B_2: we provide a procedure to construct a Boundary CFT net B of von Neumann algebras on the half-plane x>0, associated with A, and locally isomorphic to B_2. All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of B_2 to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S^1.Comment: 20 page

    How to remove the boundary in CFT - an operator algebraic procedure

    Get PDF
    The relation between two-dimensional conformal quantum field theories with and without a timelike boundary is explored.Comment: 18 pages, 2 figures. v2: more precise title, reference correcte

    On local boundary CFT and non-local CFT on the boundary

    Full text link
    The holographic relation between local boundary conformal quantum field theories (BCFT) and their non-local boundary restrictions is reviewed, and non-vacuum BCFT's, whose existence was conjectured previously, are constructed.Comment: 16 pages. Contribution to "Rigorous Quantum Field Theory", Symposium in honour of J. Bros, Paris, July 2004. Based on joint work math-ph/0405067 with R. Long

    The footprint of large scale cosmic structure on the ultra-high energy cosmic ray distribution

    Full text link
    Current experiments collecting high statistics in ultra-high energy cosmic rays (UHECRs) are opening a new window on the universe. In this work we discuss a large scale structure model for the UHECR origin which evaluates the expected anisotropy in the UHECR arrival distribution starting from a given astronomical catalogue of the local universe. The model takes into account the main selection effects in the catalogue and the UHECR propagation effects. By applying this method to the IRAS PSCz catalogue, we derive the minimum statistics needed to significatively reject the hypothesis that UHECRs trace the baryonic distribution in the universe, in particular providing a forecast for the Auger experiment.Comment: 21 pages, 14 figures. Reference added, minor changes, matches published versio

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde

    The Conformal Spin and Statistics Theorem

    Get PDF
    We prove the equality between the statistics phase and the conformal univalence for a superselection sector with finite index in Conformal Quantum Field Theory on S1S^1. A relevant point is the description of the PCT symmetry and the construction of the global conjugate charge.Comment: plain tex, 22 page

    Modular localization and Wigner particles

    Full text link
    We propose a framework for the free field construction of algebras of local observables which uses as an input the Bisognano-Wichmann relations and a representation of the Poincare' group on the one-particle Hilbert space. The abstract real Hilbert subspace version of the Tomita-Takesaki theory enables us to bypass some limitations of the Wigner formalism by introducing an intrinsic spacetime localization. Our approach works also for continuous spin representations to which we associate a net of von Neumann algebras on spacelike cones with the Reeh-Schlieder property. The positivity of the energy in the representation turns out to be equivalent to the isotony of the net, in the spirit of Borchers theorem. Our procedure extends to other spacetimes homogeneous under a group of geometric transformations as in the case of conformal symmetries and de Sitter spacetime.Comment: 22 pages, LaTeX. Some errors have been corrected. To appear on Rev. Math. Phy

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    Some computations in the cyclic permutations of completely rational nets

    Full text link
    In this paper we calculate certain chiral quantities from the cyclic permutation orbifold of a general completely rational net. We determine the fusion of a fundamental soliton, and by suitably modified arguments of A. Coste , T. Gannon and especially P. Bantay to our setting we are able to prove a number of arithmetic properties including congruence subgroup properties for S,TS, T matrices of a completely rational net defined by K.-H. Rehren .Comment: 30 Pages Late
    • …
    corecore