16,633 research outputs found
Group Cohomology, Modular Theory and Space-time Symmetries
The Bisognano-Wichmann property on the geometric behavior of the modular
group of the von Neumann algebras of local observables associated to wedge
regions in Quantum Field Theory is shown to provide an intrinsic sufficient
criterion for the existence of a covariant action of the (universal covering
of) the Poincar\'e group. In particular this gives, together with our previous
results, an intrinsic characterization of positive-energy conformal
pre-cosheaves of von Neumann algebras. To this end we adapt to our use Moore
theory of central extensions of locally compact groups by polish groups,
selecting and making an analysis of a wider class of extensions with natural
measurable properties and showing henceforth that the universal covering of the
Poincar\'e group has only trivial central extensions (vanishing of the first
and second order cohomology) within our class.Comment: 18 pages, plain TeX, preprint Roma Tor vergata n. 20 dec. 9
How to add a boundary condition
Given a conformal QFT local net of von Neumann algebras B_2 on the
two-dimensional Minkowski spacetime with irreducible subnet A\otimes\A, where A
is a completely rational net on the left/right light-ray, we show how to
consistently add a boundary to B_2: we provide a procedure to construct a
Boundary CFT net B of von Neumann algebras on the half-plane x>0, associated
with A, and locally isomorphic to B_2. All such locally isomorphic Boundary CFT
nets arise in this way. There are only finitely many locally isomorphic
Boundary CFT nets and we get them all together. In essence, we show how to
directly redefine the C* representation of the restriction of B_2 to the
half-plane by means of subfactors and local conformal nets of von Neumann
algebras on S^1.Comment: 20 page
How to remove the boundary in CFT - an operator algebraic procedure
The relation between two-dimensional conformal quantum field theories with
and without a timelike boundary is explored.Comment: 18 pages, 2 figures. v2: more precise title, reference correcte
On local boundary CFT and non-local CFT on the boundary
The holographic relation between local boundary conformal quantum field
theories (BCFT) and their non-local boundary restrictions is reviewed, and
non-vacuum BCFT's, whose existence was conjectured previously, are constructed.Comment: 16 pages. Contribution to "Rigorous Quantum Field Theory", Symposium
in honour of J. Bros, Paris, July 2004. Based on joint work math-ph/0405067
with R. Long
The footprint of large scale cosmic structure on the ultra-high energy cosmic ray distribution
Current experiments collecting high statistics in ultra-high energy cosmic
rays (UHECRs) are opening a new window on the universe. In this work we discuss
a large scale structure model for the UHECR origin which evaluates the expected
anisotropy in the UHECR arrival distribution starting from a given astronomical
catalogue of the local universe. The model takes into account the main
selection effects in the catalogue and the UHECR propagation effects. By
applying this method to the IRAS PSCz catalogue, we derive the minimum
statistics needed to significatively reject the hypothesis that UHECRs trace
the baryonic distribution in the universe, in particular providing a forecast
for the Auger experiment.Comment: 21 pages, 14 figures. Reference added, minor changes, matches
published versio
Spectral triples and the super-Virasoro algebra
We construct infinite dimensional spectral triples associated with
representations of the super-Virasoro algebra. In particular the irreducible,
unitary positive energy representation of the Ramond algebra with central
charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of
even theta-summable spectral triples with non-zero Fredholm index. The
irreducible unitary positive energy representations of the Neveu-Schwarz
algebra give rise to nets of even theta-summable generalised spectral triples
where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic
cocycles in the NS case have been adde
The Conformal Spin and Statistics Theorem
We prove the equality between the statistics phase and the conformal
univalence for a superselection sector with finite index in Conformal Quantum
Field Theory on . A relevant point is the description of the PCT symmetry
and the construction of the global conjugate charge.Comment: plain tex, 22 page
Modular localization and Wigner particles
We propose a framework for the free field construction of algebras of local
observables which uses as an input the Bisognano-Wichmann relations and a
representation of the Poincare' group on the one-particle Hilbert space. The
abstract real Hilbert subspace version of the Tomita-Takesaki theory enables us
to bypass some limitations of the Wigner formalism by introducing an intrinsic
spacetime localization. Our approach works also for continuous spin
representations to which we associate a net of von Neumann algebras on
spacelike cones with the Reeh-Schlieder property. The positivity of the energy
in the representation turns out to be equivalent to the isotony of the net, in
the spirit of Borchers theorem. Our procedure extends to other spacetimes
homogeneous under a group of geometric transformations as in the case of
conformal symmetries and de Sitter spacetime.Comment: 22 pages, LaTeX. Some errors have been corrected. To appear on Rev.
Math. Phy
Charged sectors, spin and statistics in quantum field theory on curved spacetimes
The first part of this paper extends the Doplicher-Haag-Roberts theory of
superselection sectors to quantum field theory on arbitrary globally hyperbolic
spacetimes. The statistics of a superselection sector may be defined as in flat
spacetime and each charge has a conjugate charge when the spacetime possesses
non-compact Cauchy surfaces. In this case, the field net and the gauge group
can be constructed as in Minkowski spacetime.
The second part of this paper derives spin-statistics theorems on spacetimes
with appropriate symmetries. Two situations are considered: First, if the
spacetime has a bifurcate Killing horizon, as is the case in the presence of
black holes, then restricting the observables to the Killing horizon together
with "modular covariance" for the Killing flow yields a conformally covariant
quantum field theory on the circle and a conformal spin-statistics theorem for
charged sectors localizable on the Killing horizon. Secondly, if the spacetime
has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes,
"geometric modular action" of the rotational symmetry leads to a
spin-statistics theorem for charged covariant sectors where the spin is defined
via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page
Some computations in the cyclic permutations of completely rational nets
In this paper we calculate certain chiral quantities from the cyclic
permutation orbifold of a general completely rational net. We determine the
fusion of a fundamental soliton, and by suitably modified arguments of A. Coste
, T. Gannon and especially P. Bantay to our setting we are able to prove a
number of arithmetic properties including congruence subgroup properties for
matrices of a completely rational net defined by K.-H. Rehren .Comment: 30 Pages Late
- …