265 research outputs found

    The recursion hierarchy for PCF is strict

    Get PDF
    We consider the sublanguages of Plotkin's PCF obtained by imposing some bound k on the levels of types for which fixed point operators are admitted. We show that these languages form a strict hierarchy, in the sense that a fixed point operator for a type of level k can never be defined (up to observational equivalence) using fixed point operators for lower types. This answers a question posed by Berger. Our proof makes substantial use of the theory of nested sequential procedures (also called PCF B\"ohm trees) as expounded in the recent book of Longley and Normann

    Report of the Citizens\u27 Dickey-Lincoln Project Impact Review Committee to Governor James B. Longley

    Get PDF
    The construction of the Dickey-Lincoln Hydroelectric Project. To examine, in depth, the proposal and its impact as seen by various segments of our society. The report will identify the factors that must carry the main weight in making a final determination

    The recursion hierarchy for PCF is strict

    Get PDF

    On the ubiquity of certain total type structures

    Get PDF
    It is a fact of experience from the study of higher type computability that a wide range of approaches to defining a class of (hereditarily) total functionals over N leads in practice to a relatively small handful of distinct type structures. Among these are the type structure C of Kleene-Kreisel continuous functionals, its effective substructure C eff, and the type structure HEO of the hereditarily effective operations. However, the proofs of the relevant equivalences are often non-trivial, and it is not immediately clear why these particular type structures should arise so ubiquitously. In this paper we present some new results which go some way towards explaining this phenomenon. Our results show that a large class of extensional collapse constructions always give rise to C, C eff or HEO (as appropriate). We obtain versions of our results for both the “standard” and “modified” extensional collapse constructions. The proofs make essential use of a technique due to Normann. Many new results, as well as some previously known ones, can be obtained as instances of our theorems, but more importantly, the proofs apply uniformly to a whole family of constructions, and provide strong evidence that the above three type structures are highly canonical mathematical objects

    Computability structures, simulations and realizability

    Get PDF
    We generalize the standard construction of realizability models (specifically, of categories of assemblies) to a wide class of computability structures, broad enough to embrace models of computation such as labelled transition systems and process algebras. We consider a general notion of simulation between such computability structures, and show how these simulations correspond precisely to certain functors between the realizability models. Furthermore, we show that our class of computability structures has good closure properties — in particular, it is ‘cartesian closed ’ in a slightly relaxed sense. Finally, we investigate some important subclasses of computability structures and of simulations between them. We suggest that our 2-category of computability structures and simulations may offer a useful framework for investigating questions of computational power, abstraction and simulability for a wide range of models.

    Some Programming Languages Suggested by Game Models (Extended Abstract)

    Get PDF
    AbstractWe consider a simple and well-known category of alternating games (also known as sequential data structures) and several categories derived from it. In each case, we present an extension of Plotkin's language FPC (or a suitable linearization thereof) which defines all computable strategies of appropriate types. The quest for such languages results in a novel selection of language primitives for state encapsulation, coroutining and backtracking
    • …
    corecore