

Edinburgh Research Explorer

Computability structures, simulations and realizability

Citation for published version:
Longley, J 2014, 'Computability structures, simulations and realizability' Mathematical Structures in
Computer Science, vol. 24, no. 2, e240201. DOI: 10.1017/S0960129513000182

Digital Object Identifier (DOI):
10.1017/S0960129513000182

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Mathematical Structures in Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43705909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1017/S0960129513000182
https://www.research.ed.ac.uk/portal/en/publications/computability-structures-simulations-and-realizability(97fab052-99d1-4bb7-b4c2-57852563e7e8).html

Computability structures, simulations and realizability

John Longley

January 10, 2013

Abstract

We generalize the standard construction of realizability models (specifically, of cat-
egories of assemblies) to a wide class of computability structures, broad enough to em-
brace models of computation such as labelled transition systems and process algebras.
We consider a general notion of simulation between such computability structures,
and show how these simulations correspond precisely to certain functors between the
realizability models. Furthermore, we show that our class of computability structures
has good closure properties — in particular, it is ‘cartesian closed’ in a slightly relaxed
sense. Finally, we investigate some important subclasses of computability structures
and of simulations between them. We suggest that our 2-category of computability
structures and simulations may offer a useful framework for investigating questions of
computational power, abstraction and simulability for a wide range of models.

1 Introduction

The purpose of this paper is to present a rather broad generalization of some ideas and
results from the theory of realizability models: in particular, the construction of a category
of assemblies over a given model, and a notion of simulation of one model in another. Our
theory is general enough to be applicable to a wide range of models of computation from
many areas of computer science; our suggestion is that this may provide a useful framework
for studying very general questions of computational power, abstraction and simulability.

1.1 Background

Let us begin with a brief review of the ideas that we wish to generalize. In the standard
account of realizability models (as presented e.g. in [23]), one begins with a partial combi-
natory algebra (or PCA) A — a structure which one may loosely regard as some kind of
‘abstract machine’ or ‘untyped model of computation’. From this, one builds a category
such as the category of assemblies Asm(A), which can be thought of as a ‘universe of com-
putable functions’ arising from A: its objects can be regarded as ‘datatypes’ that can be
represented or implemented on A, and its morphisms can be seen as ‘A-computable maps’
between such datatypes. (We shall review the precise definition of Asm(A) in Section 2
below.) Categories of this form possess a very rich mathematical structure and have proved
interesting from several points of view: for instance, as categorical models corresponding
to Kleene-style realizability interpretations of intuitionistic logic [9]; as models for powerful

1

polymorphic type systems [17]; or as universes within which certain ‘sets’ carry an intrinsic
domain-like structure [10, 21].

In [12], a notion of morphism between PCAs was introduced which interacts well with
the Asm construction. Informally, an applicative morphism A−−BB is a way of simulating
or implementing the abstract machine A on the machine B; in many cases it makes sense
to think of A here as modelling computation at a ‘more abstract’ level than B. Such a
simulation induces a functor Asm(A) → Asm(B); moreover, one can give a precise cate-
gorical characterization of those functors that arise in this way up to natural isomorphism.
In this way, we obtain a tight correspondence between the (2-)category of PCAs and ap-
plicative morphisms (which we call PCA) and a certain (2-)category of categories (again,
this material will be reviewed in Section 2). We shall henceforth refer to this result as the
correspondence theorem.

Our 2-category PCA gives rise to a notion of equivalence between PCAs. Informally, two
PCAs A,B are equivalent if there are simulations A−−BB and B−−BA which are ‘mutually
inverse up to computable translation’. This notion highlights some interesting differences
in ‘computational strength’ between well-known models of computation: for example, the
PCA consisting of the natural numbers with Kleene application turns out to be inequivalent
to the PCA of untyped λ-terms modulo β-equality, even though these models have the same
computational power as measured by the functions N → N that they can compute.1

A consequence of the above theory is that A and B are equivalent if and only if Asm(A)
and Asm(B) are equivalent as categories. This suggests that we may in some sense view
equivalent PCAs as just alternative presentations of the same underlying ‘notion of com-
putability’, and that the category of assemblies gives us a kind of presentation-invariant
embodiment of what it is that they have in common. (See however Section 2.1 for an im-
portant caveat on this idea.) Indeed, if one’s main interest is in the PCAs themselves and
their interrelationships, one can see the correspondence theorem as offering some sort of
vindication of the definition of the 2-category PCA (and of the resulting notion of PCA
equivalence).

All this is a pleasing enough story as far as it goes, and the correspondence theorem
we have mentioned is mathematically satisfying. However, this story might be felt to be of
limited interest on at least two accounts:

• The vast majority of ‘models of computation’ studied in computer science today do
not naturally take the form of PCAs. However, the general concepts of ‘computa-
tional power’, ‘simulation’ and ‘levels of abstraction’ would intuitively seem to be of
much more general significance, so it is natural to wonder whether our mathematical
framework for discussing these concepts could be broadened to encompass other kinds
of models of computation, such as labelled transition systems or process calculi.

• The 2-category PCA turns out to be relatively poor in 2-categorical structure. In
the interests of coming up with a mathematically fruitful theory, it is natural to ask
whether we can do better.

1This example is explained in detail in [12, Chapter 3]. Briefly, each of these models may be simulated
in the other, but the problem is that the simulations cannot be ‘essentially mutually inverse’ in the required
sense, owing to the fact that the λ-calculus is in some way ‘more abstract’ than the Kleene model.

2

As regards the first of these points, some progress was made in [13, 14, 11], where it
was shown that the basic theory can be straightforwardly generalized to a setting of typed
PCAs, of which ordinary (untyped) PCAs form a special case. This greatly extends the
scope of the theory: for instance, the typed PCA framework embraces all the cartesian
closed categories used in denotational semantics, as well as a wealth of syntactic models for
languages such as PCF and extensions thereof. This version of the theory was presented
more fully in [16], where the typed PCA framework played a crucial role in an investigation
of higher order computability notions. A further generalization to ‘linear’ (in contrast to
‘intuitionistic’) structures was considered by Hoshino in [8].

Even so, the typed PCA framework comes nowhere near to embracing the enormous va-
riety of ‘models of computation’ currently studied in computer science as a whole. Moreover,
from the point of view of categorical structure, the 2-category of typed PCAs is scarcely bet-
ter than our original 2-category of PCAs. We may therefore still ask whether it is possible
to do better on both these scores.

1.2 Content of the paper

Our purpose in this paper is to offer a significantly more general framework for the study
of models of computation and the ‘notions of computability’ they embody. Specifically, we
shall define a rather wide 2-category CST RUCT of computability structures and simulations
between them — much broader than the 2-category of typed PCAs — in such a way that:

• a version of the Asm construction still makes sense, and an appropriate generalization
of the correspondence theorem goes through;

• a far wider range of models from across computer science are admitted — for example,
labelled transition systems and process calculi;

• the class of computability structures has better closure properties than that of (un-
typed or typed) PCAs.

Our work is motivated by both mathematical and computer science considerations. From a
purely mathematical point of view, it can be seen as a deeper investigation into the corre-
spondence theorem first established in the PCA setting: just how far does this phenomenon
extend, and what mathematical machinery is needed to make it work? Moreover, the iden-
tification of a class of models with richer closure properties is of mathematical interest in its
own right, and perhaps an indication that we are ploughing fertile ground. From a computer
science point of view, our hope is to offer a general framework for a study of ‘computability’
and ‘simulations’ that does justice to the diversity of computation models currently in use.
Much of the richness of computer science, after all, comes from the use of a wide variety of
modelling styles to study computational systems at many different levels of description or
abstraction. A general framework for talking about these modelling styles and their inter-
relationships therefore holds out the hope of bringing some degree of unification to hitherto
disparate parts of the subject.

The key idea behind our generalization is a switch from a ‘higher order’ to a ‘first order’
style of modelling. Typed PCAs naturally model higher order flavours of computation, in
the sense that a ‘computable operation’ from a type σ to a type τ is a value of some type

3

(σ → τ) which may itself serve as input to other computable operations. In the first order
style of modelling, data values are rigidly separated from the computable operations that
act on them, and only later do we show how the higher order situation may be conveniently
recovered as a special case of this. Indeed, one of the main goals of this paper is to show how
surprisingly much of the basic machinery of realizability models can be smoothly adapted
to this ‘flattened’ first order setting.

Two major omissions should be noted at the outset. First, our focus in this paper is
mostly on setting up the general framework, and there will be relatively little investigation
into particular models. Although in Section 3 we shall briefly indicate some of the main
sources of examples we have in mind, and present one non-trivial example of a simulation
in detail, it would require a far deeper study of specific models from diverse areas of com-
puter science to substantiate our claims regarding the unifying potential of our framework.
Secondly, whilst we shall pay some attention to the categorical structure of Asm(C) for
various kinds of model C, we shall barely touch on the kinds of logical constructs that such
categories allow us to interpret. Insofar as the interpretation of logic was a key motivation
for the study of realizability in the first place, this might appear as a serious deficiency. On
the other hand, readers experienced in categorical logic will have little difficulty in seeing
broadly what kinds of logical structure our categories support.

The main body of the paper is structured as follows. In Section 2 we give a brief tech-
nical summary of the relevant parts of the existing theory of untyped and typed PCAs. In
Section 3 we define our main category of interest: the 2-category CST RUCT of computabil-
ity structures and simulations. As a non-trivial example, we show how Milner’s well-known
translation from the lazy λ-calculus to the π-calculus ([18]), can be viewed as a simulation
between the relevant computability structures. We also show how any computability struc-
ture C gives rise to a ‘category of assemblies’ Asm(C), and establish a tight correspondence
between simulations C−−BD and certain functors Asm(C) → Asm(D), generalizing the
existing correspondence theorem for PCAs. In Section 4 we investigate the closure prop-
erties of CST RUCT , showing in particular that it is ‘almost cartesian closed’, in a sense
that is good enough to ensure that for any structures C and D, the structure DC is uniquely
determined up to equivalence. In Section 5 we mention some possible variations on our
theory and some interesting subcategories of CST RUCT ; in particular we show how the
theory of typed PCAs fits into this more general framework. We end in Section 6 with some
general discussion and suggestions for further work.

1.3 Related work

Our work overlaps significantly with recent and essentially independent work by Cockett
and Hofstra [4, 5]. In both their work and ours, the key idea is to generalize the definition
of PCA to something with a typed, first order flavour, and to show how a general notion
of ‘simulation’ may be defined in this setting. Another point in common is the idea that
models of computation give rise to categories of certain kinds, in such a way that simulation
equivalence corresponds precisely to some well-behaved kind of categorical equivalence. In
both cases, then, the basic philosophy is that the category serves as a kind of presentation-
invariant embodiment of the underlying ‘notion of computability’.

Various differences between [5] and our work should also be noted. Firstly, there is a
general difference in spirit: whereas Cockett and Hofstra adopt a thoroughgoing ‘categorical’

4

approach that provides a detailed and precise axiomatization of the mathematical structure
that the theory presupposes, we have opted for a relatively simple-minded ‘set theoretic’
treatment of models of computation as they concretely appear to the working computer
scientist. Secondly, at a technical level, there are various differences in the precise level
of generality in which the phenomena in question are studied, even after the categorical
framework of [5] has been specialized to a familiar set-theoretic setting. These differences
will be discussed as we proceed (see Sections 2.1 and 3.1). Nevertheless, there is a very
significant area of overlap in which we are talking about essentially the same things — in
particular, it is striking that our notion of ‘equivalence of models’ turns out to coincide
exactly (for models within the overlap) with the lax simulation equivalence of [5].

Thirdly, as regards the categories derived from the computation models, the focus of
the two approaches is somewhat different. Whereas our aim is to describe concretely a
construction that directly generalizes that of the ‘classical’ category of assemblies, the aim
in [4, 5] is to give a categorical analysis of that construction in terms of several smaller
steps. Indeed, most of the focus in [4, 5] is not on the classical category of assemblies itself,
but on an intermediate structure known as a Turing category. One of the main results of [5]
is a correspondence theorem for Turing categories, closely analogous to ours for categories
of assemblies. We shall resume discussion of this in Section 2 below.

Aside from these differences, the following new technical contributions are specific to
the present work. First, we identify a precise categorical characterization of those functors
between assembly categories that arise from simulations between computability structures;
this enables us to state and prove our version of the correspondence theorem. The key
notion here is that of a quasi-regular functor — a generalization of the notion of regular
functor to a setting where finite products are not assumed. Secondly, our identification
of the ‘almost cartesian closed’ structure in our 2-category of models is novel. Thirdly,
there is an explicit emphasis in our work on the generalization to non-deterministic models
of computation such as those arising from concurrency theory, and in some respects our
definitions are tuned so as to admit a large class of examples from process algebra and
related areas (see Example 3.3(iii) and the subsequent discussion).

Also similar in spirit to our work is the general framework for realizability developed
by Hofstra in [7]. Here one starts with a broad 2-category of basic combinatorial objects,
whose definition resembles that of our computability structures in some respects. On one
axis, Hofstra’s framework is more restricted than ours: since his main interest is in what one
needs in order to build a realizability topos (via a tripos), he restricts attention to untyped
structures rather than general typed ones. Along another axis, however, his framework is
broader in that it embraces the notion of ordered PCAs, a generalization of ordinary PCAs
introduced in [22]. As shown in [7], this extra generality allows one to unify ‘computational’
examples with geometric or ‘localic’ ones. We would expect that most if not all of our
theory extends readily to the ordered setting. However, we have chosen to eschew this
additional generality for the purpose of the present paper, both because we are not aware of
any computationally motivated examples that require it, and because the extra generality
of the ordered setting is purchased at the cost of a modest technical overhead: our present
interest is not so much in maximizing generality as in minimizing the machinery required
for our theory to work.

Finally, we mention the work of Abramsky on ‘process realizability’ [2] as another at-
tempt to broaden the scope of realizability to embrace concurrent and non-deterministic

5

flavours of computation as well as the usual functional or applicative kinds. In [2], the ideas
are developed in the setting of (a mild extension of) Milner’s CCS. In place of a single
‘application’ operation as in the theory of PCAs, one considers both a ‘left’ and a ‘right’
application, dual to each other, which allows the same process term to act as a ‘function’
in two entirely symmetrical ways. When transposed to our present setting, an effect of
the flattening from ‘higher order’ to ‘first order’ is that both these kinds of application are
subsumed as instances of the more general concept of computable operation. However, the
realizability construction Abramsky considers is interestingly different from the standard
one, and exploits the duality inherent in his setup to give a model of Classical Linear Logic.
We have not yet investigated whether this idea can be fruitfully applied within our present
first order framework.

Acknowledgements

I am very grateful to Robin Cockett and Pieter Hofstra for the invitation to present this
material at the PCARC workshop, for illuminating technical discussions, and for the en-
couragement to write this paper. I am also grateful to the other PCARC participants for
their valuable feedback, and to the anonymous referee for several helpful comments and
suggestions.

I have benefited from the use of Paul Taylor’s LaTeX package for category theory dia-
grams in the production of this paper.

2 Untyped and typed PCAs

We now briefly review of the existing definitions and results for untyped and typed PCAs;
for fuller details see [12] or [23]. Later, in Section 5, we shall recover this material as a
special case of our more general theory.

If e, e′ are mathematical expressions, we write e ↓ to mean “the value of e is defined”;
e ' e′ to mean “if either e or e′ is defined then so is the other and their values are equal”;
and e � e′ to mean “if e′ is defined then so is e and their values are equal”.

2.1 Untyped PCAs

The following definition (with minor differences) appeared in [6]; it generalizes the notion
of a total combinatory algebra introduced in [20].

Definition 2.1 An (untyped) partial combinatory algebra, or PCA, is a set A equipped
with a (left-associative) partial binary operation · : A×A ⇀ A and containing elements k, s
such that

k · x · y = x s · x · y ↓ s · x · y · z � x · z · (y · z)

Here and throughout the paper, we adopt that convention that variables in displayed for-
mulae that are not explicitly introduced elsewhere (in this case, x, y, z) are regarded as
implicitly universally quantified at the start of the displayed formula.

Variations on the above definition are possible. For instance, the definition is often given
with ‘'’ in place of ‘�’ — we may call a PCA strict if this stronger condition is satisfied

6

— but the theory we shall present works naturally with our slightly weaker definition.2

Furthermore, the condition s · x · y ↓ is from a certain point of view unnecessary (see [23,
Theorem 1.2.3]), although it renders the development of our theory somewhat smoother.

The following definition first appeared in [12]:

Definition 2.2 Let A,B be PCAs.
(i) An applicative morphism γ : A−−BB is a total relation γ from A to B such that

for some r ∈ B we have

γ(a, b) ∧ γ(a′, b′) ∧ a · a′ ↓ ⇒ γ(a · a′, r · b · b′)

(ii) Given γ, δ : A−−BB, we write γ � δ, and say there is an applicative transformation
from γ to δ, if for some t ∈ B we have

γ(a, b) ⇒ δ(a, t · b)

An applicative morphism A−−BB can be seen as a way of simulating A in B; a con-
venient slogan is “application in A is effective in B”. The condition γ � δ says that
γ-representations for elements of A may be transformed into δ-representations (effectively
within B). It is easy to check that PCAs, applicative morphisms and applicative transfor-
mations constitute a preorder-enriched category, which we call PCA.

We now show how to construct a realizability model over a PCA.

Definition 2.3 For any PCA A, the category of assemblies Asm(A) is defined as follows.

• Objects are pairs (X,) where X is a set and ⊆ A ×X is a relation such that for
every x ∈ X there is some a x.

• Morphisms (X,) → (Y,′) are set-theoretic functions f : X → Y such that for some
r ∈ A we have

a x ⇒ r · a f(x)

Identities and composition are as for ordinary functions.

The category Asm(A) is equipped with an evident forgetful functor ΓA : Asm(A) → Set,
and also a functor ∇A : Set → Asm(A) defined as follows: ∇A(X) = (X,) where a x
for all a and x, and ∇A(f : X → Y) = f .

It turns out that Asm(A) is among other things a regular category: that is, it has finite
limits and coequalizers of kernel-pairs, and the pullback of a regular epi along any morphism
is a regular epi. (An in-depth understanding of this definition is not needed for this paper.)
Furthermore, both ΓA and ∇A are regular functors (also known as exact functors): that is
to say, they preserve finite limits and coequalizers of kernel-pairs. Note also that ΓA is left
adjoint to ∇A and that ΓA ◦ ∇A = id.

An applicative morphism γ : A−−BB induces a functor Asm(γ) : Asm(A) → Asm(B)
in the following way: Asm(γ)(X,) = (X,′) where b ′ x iff there exists a x with
γ(a, b); and Asm(γ)(f) = f . It is easy to show that Asm(γ) is a regular functor, and that
ΓB ◦ Asm(γ) ∼= ΓA and Asm(γ) ◦ ∇A

∼= ∇B . Moreover, an applicative transformation
γ � δ induces a natural transformation Asm(γ) → Asm(δ).

Abstracting from this situation, we arrive at the following definition (we write ∗ for
horizontal composition):

2In [23], our ‘strict PCAs’ are called simply ‘PCAs’, and our ‘PCAs’ are referred to as ‘lax PCAs’.

7

Definition 2.4 (i) A Γ∇-regular category is any regular category C equipped with regular
faithful functors Γ : C → Set and ∇ : Set → C such that Γ a ∇ and Γ ◦ ∇ ∼= id.

(ii) If C,D are Γ∇-regular categories, a Γ∇-regular functor F : C → D is a regular
functor such that ΓD ◦ F ∼= ΓC and F ◦ ∇C ∼= ∇D. (These isomorphisms are unique when
they exist.)

(iii) If F,G : C → D are Γ∇-regular functors, a Γ∇-natural transformation η : F → G is
a natural transformation such that ΓD ∗η = idΓC and η∗∇C = id∇D . (Both these conditions
are automatic in the case C = Asm(A), D = Asm(B).)

(iv) We write Γ∇REG for the (large) 2-category of Γ∇-regular categories, Γ∇-regular
functors and natural transformations between them.

Actually, the ∇ condition in part (ii) is not strictly necessary: a simple cardinality
argument (appearing as Lemma 1.6.3 in [23]) shows that for any functor F : Asm(A) →
Asm(B), the condition ΓB ◦ F ∼= ΓA automatically implies F ◦ ∇A

∼= ∇B .
The tight correspondence between applicative morphisms and regular functors is encap-

sulated in the following theorem from [12] (see also [23]).

Theorem 2.5 (Correspondence theorem) The Asm construction defines a 2-functor
PCA → Γ∇REG that is locally an equivalence: that is, for any A,B the ordinary functor
Asm : PCA[A,B] → Γ∇REG[Asm(A),Asm(B)] is part of an equivalence of preorders.

Corollary 2.6 Asm(A) and Asm(B) are equivalent as categories iff A,B are applicatively
equivalent (that is, A ' B in the 2-category PCA).

The corollary follows because any equivalence of categories Asm(A) ' Asm(B) may easily
be seen to respect the Γ and ∇ functors.

Before proceeding to typed PCAs, we pause to discuss a significant choice involved in
our definition of applicative morphism: in the terminology of [5], the choice between lax
and strict simulations. Our present Definition 2.2(i) corresponds to the lax notion: if r
realizes γ : A−−BB, we do not require that the degree of partiality of r exactly matches
that of application in A. To obtain the stricter notion of simulation, we would need to add
a condition such as

γ(a, a′) ∧ γ(b, b′) ∧ r · b · b′ ↓ ⇒ a · a′ ↓

(The notion of applicative transformation given by Definition 2.2(ii) remains the appropriate
one to use in connection with strict simulations — cf. [5, Section 2]). It is known that
equivalence of (strict) PCAs via strict applicative morphisms is a stronger condition than
equivalence via lax ones (see [4, Section 5]).3

An analogue of our correspondence theorem can also be obtained for the stricter equiv-
alence: whereas lax equivalence coincides with equivalence of the associated categories of
assemblies, it is shown in [4] is that strict equivalence coincides with Morita equivalence of
Turing categories.

In [4, 5], Cockett and Hofstra compellingly argue that strict equivalence is more appro-
priate where questions of computability are concerned, while the lax notion is better adapted

3In the context of [4], simulations are also required to be single-valued (cf. Remark 3.6(iii) below).
However, this does not affect the present discussion, since both in the lax and strict settings, equivalences
may without loss of generality be taken to consist of single-valued simulations (see Corollary 5.18 and the
subsequent remark).

8

to questions of realizability. This is because in realizability it is never a problem if a realizer
does ‘more’ than the job it is designed for, whereas in computability one is often interested
in the precise domain of a computable operation. Certainly, if the idea is that equivalent
structures should share ‘the same’ computability theory in some sense, then there will be
significant aspects of our structures (such as their theory of m-reducibility) that are stable
under strict equivalences but not lax ones. So if we consider models modulo lax equivalence,
we are at best dealing with ‘computability notions’ in a somewhat coarse-grained sense.

Our main reason for concentrating here on the lax notion of simulation is that this
appears to us (at present) to be the mathematically more fruitful choice once we generalize to
first order structures as in Section 3 below. Indeed, we shall see that the Asm construction
and its associated theory generalize well to this broader setting, whereas it seems there is
rather little to say by way of a corresponding generalization of Turing categories: most
of the interest in these categories (as presented in [4]) seems tied to their higher order
nature. We would also add that even our more coarse-grained view would seem to be
adequate in practice for mapping out the computability landscape: we do not know of any
‘computationally natural’ examples of models that are laxly not strictly equivalent.

2.2 Typed PCAs

We now briefly sketch the generalization of the above theory to typed PCAs as in [13, 14].
(Note that typed PCAs were called ‘partial combinatory type structures’ in [14].) The
essential difference from untyped PCAs is that in place of a single carrier set A, we now
allow a whole family of carrier sets indexed by types.

Definition 2.7 (i) A type world is simply an inhabited set T of type names (henceforth
types) endowed with right-associative binary operations ∗ and ⇒.

(ii) A typed PCA (or TPCA) over a type world T is a family (Aσ | σ ∈ T) of inhabited
sets equipped with partial ‘application’ operations ·στ : Aσ⇒τ ×Aσ ⇀ Aτ for each σ, τ ∈ T ,
such that for every ρ, σ, τ ∈ T there exist elements

kστ ∈ Aσ⇒τ⇒σ sρστ ∈ A(ρ⇒σ⇒τ)⇒(ρ⇒σ)⇒ρ⇒τ

pairστ ∈ Aσ⇒τ⇒(σ∗τ) fstστ ∈ A(σ∗τ)⇒σ sndστ ∈ A(σ∗τ)⇒τ

satisfying the following for all appropriately typed x, y, z:

k · x · y = x s · x · y ↓ s · x · y · z � x · z · (y · z)

fst · (pair · x · y) = x snd · (pair · x · y) = y

Note that TPCAs are inherently higher order: an ‘operation’ that maps values of type σ to
values of type τ is itself a value of type σ ⇒ τ . In the study of higher order computability
we are often interested in the type world freely generated from some set of basic type names
by means of ∗ and ⇒; a TPCA over such a type world may be called a simply typed PCA.
Note also that an untyped PCA is just a TPCA over the singleton type world 1.

The remaining definitions from Section 2.1 can be straightforwardly adapted to the
TPCA setting by means of suitable type decorations. For instance, if A,B are TPCAs over
type worlds T,U respectively, an applicative morphism γ : A−−BB consists of a function

9

γ : T → U together with a family of total relations γσ from Aσ to Bγσ, such that each
application operation ·στ in A is ‘tracked’ by some r ∈ Bγ(σ⇒τ)⇒γσ⇒γτ in the sense of
Definition 2.2(i). With the evident definition of an applicative transformation γ � δ, this
yields a preorder-enriched category T PCA of which PCA is a full sub-2-category.

An assembly over a TPCA A consists of a triple (X,σ,) where X is a set, σ is a
type, and ⊆ Aσ × X is a relation such that for every x ∈ X there is some a X. A
morphism (X,σ,) → (Y, τ,′) of such assemblies is just a function X → Y that is tracked
by some r ∈ Aσ⇒τ in the obvious way. Once again, the category Asm(A) of assemblies
over a TPCA A turns out to be a Γ∇-regular category, and the Asm construction yields
a 2-functor T PCA → Γ∇REG which is locally an equivalence and extends the 2-functor
PCA → Γ∇REG described earlier. As a corollary, the categories Asm(A), Asm(B) are
equivalent if A ' B in the 2-category T PCA. (Note that equivalences are possible between
TPCAs over different type worlds — indeed, a major theme of [13] was the identification of
equivalences between particular untyped PCAs and particular simply typed ones.)

3 Computability structures and realizability

We are now ready to introduce our primary object of study: the 2-category of computabil-
ity structures (henceforth C-structures) and simulations between them. We offer this as
a relatively broad framework within which a version of the above theory naturally goes
through.

3.1 Computability structures

In essence, the notion of computability structure can be seen as a ‘first order flattening’ of
the notion of TPCA, in which data values are sharply distinguished from the computable
operations that act on them. Furthermore, our computability structures allow computable
operations to be multi-valued or ‘non-deterministic’.

Definition 3.1 A C-structure C consists of the following:

• a family |C| of inhabited sets (regarded as ‘datatypes’),

• for each A,B ∈ |C|, a set C[A,B] of relations from A to B (regarded as ‘computable
operations’, possibly partial and possibly multi-valued)

such that

• for each A ∈ |C| there exists i ∈ C[A,A] such that i(a, a) for all a ∈ A (we call such
an i a superidentity relation on A);

• if r ∈ C[A,B] and s ∈ C[B,C], there exists t ∈ C[A,C] such that if r(a, b) and s(b, c)
then t(a, c) (we call such a relation t a supercomposite of r and s).

A few technical remarks on this definition are in order.

10

Remarks 3.2 (i) It would arguably be more principled to draw a distinction between names
of types and their sets of values — that is, to define a C-structure over a set T of type names
to be a family of sets (Aτ | τ ∈ T) together with certain relations between them, in the
spirit of Definition 2.7. This would, for example, allow distinct type names to be assigned
the same set of values. However, no interesting extra generality is at stake here, since we
may simply relabel elements of datatypes if necessary, and we prefer to avoid the extra
notational clutter that such an approach would entail.

(ii) Related to this is our decision to require our datatypes to be inhabited. This is more
a matter of stylistic preference than mathematical necessity: all of our main results can
be made to go through in the presence of empty types. However, if one empty type were
admitted, we would also have to allow C-structures with several unrelated empty types (e.g.
to uphold the product construction of Proposition 4.1); and in the absence of type names our
framework cannot support these. As it is, we prefer to sidestep these annoying complications
by outlawing empty types altogether. Note, however, that the empty C-structure 0 (with
no datatypes at all) is admitted by Definition 3.1.

(iii) The fact that we only require ‘superidentity’ and ‘supercomposite’ relations is a
feature shared with [7], though not with [5] where the ambient categorical framework im-
poses the existence of genuine identities and composites. In the case of superidentities, the
extra generality is probably a mere curiosity, since we do not know of any natural examples
where proper identities are not present. In the case of composition, however, the additional
generality is certainly significant: as we shall shortly see, there are natural examples in
which supercomposites are present but ordinary relational composites are not.

The decision to work with these ‘super’ notions can also be seen as consonant with the
decision to use � rather than ' in the definition of PCA. Following our terminology for
PCAs, C-structures with proper identities and composition may be referred to as strict.

(iv) For readers familiar with TPCAs, it might appear surprising that our ‘computable
operations’ are essentially extensional objects: there would seem to be no provision for
distinct ‘operations’ that induce the same relation on data values. This is because our
‘computable operations’ generalize the notion of TPCA elements only in their role as the
left argument in an application a · b — and for this purpose, only their extension is relevant.
We shall see later (Definition 5.22) that when computable operations may themselves be
represented by data values, intensional distinctions are indeed allowed for as in TPCAs.

(v) Let us note how the above definition relates to the approach taken in [5]. There,
the basic notion of ‘model of computation’ is that of a category D equipped with a functor
F : D → C where C is a restriction category (a ‘category of partial maps’ in a certain
abstract sense). No real generality is lost by assuming F is faithful. The leading example
of a restriction category is the category of sets and partial functions, and in this case such
models amount to strict C-structures in which all computable operations are single-valued.
We shall consider this important class of structures in Section 5.2, under the name of
deterministic C-structures. If C is taken to be the category Rel of sets and relations, we
obtain in essence the class of all strict C-structures.

One may also take C to be the category of sets and total functions (with a trivial
restriction structure). Indeed, given any category C with a terminal object 1, we may
form the C-structure whose datatypes are the sets Hom(1, X) for X ∈ C, with computable
operations induced by morphisms in C via composition.

(vi) It is natural to ask whether we can ‘categorify’ our notion of (lax) C-structure by

11

considering a category D endowed with a lax functor F : D → Rel:

idF (X) ⊆ F (idX) F (g) ◦ F (f) ⊆ F (gf)

Indeed, the image in Rel of any such F is in essence a C-structure. However, there are also
C-structures that do not arise in this way. For instance, consider the C-structure C with
four datatypes A = {a}, B = {b}, C = {c} and D = {d, d′}, and with operations as follows
(alongside the four identity operations):

{a 7→ b} ∈ C[A,B] ∅ ∈ C[B,C] {c 7→ d} ∈ C[C,D]
{a 7→ c} ∈ C[A,C] {b 7→ d′} ∈ C[B,D] {a 7→ d}, {a 7→ d′} ∈ C[A,D]

Suppose C were the image of a lax functor F : D → Rel, where F (f) = {a 7→ b}, F (g) = ∅
and F (h) = {c 7→ d}. Then we must have F (gf) = {a 7→ c} whence F (hgf) = {a 7→ d}; on
the other hand, F (hg) = {b 7→ d′} whence F (hgf) = {a 7→ d′}.

As the above remarks show, the notion of C-structure is mathematically very general
indeed. However, our primary interest is in C-structures that model computational processes
or operations of some sort. The following selection gives a broad indication of the kinds of
examples we have in mind.

Examples 3.3 (i) Any TPCA A over a type world T gives rise to a C-structure A: let |A|
be the family of sets Aσ where σ ∈ T (relabelling if necessary as per Remark 3.2(i)); and
let A[Aσ, Aτ] be the set of partial functions Aσ ⇀ Aτ induced by elements of Aσ⇒τ .

(ii) Given a labelled transition system with set of states S, set of labels L, and transition
relation →⊆ S × L × S (with transitive closure �), we may define a C-structure C as
follows. Take |C| = {S}. For w ∈ L∗ any finite sequence of labels, let rw be the relation
{(x, y) | x

w
� y} on S, and let C[S, S] be the set {rw | w ∈ L∗}. Clearly this is a C-structure.

(iii) Let L be some language or calculus comprising the following ingredients:

• A set T of types.

• For each type σ ∈ T , an inhabited set Lσ of terms of type σ (we may think of them
as ‘closed terms’).

• For each σ ∈ T , a reflexive, transitive many-step reduction relation � ⊆ Lσ × Lσ.

• A small category K whose set of objects is T , and whose morphisms are regarded
as syntactic evaluation contexts, denoted by K[−]. This is equipped with a functor
Θ : K → Set such that Θ(σ) = Lσ for each σ ∈ T ; we write Θ(K[−])(M) asK[M]. We
also impose the ‘evaluation context condition’ that M � M ′ implies K[M] � K[M ′]
for each K[−] in K.

• For each σ ∈ T , an inhabited subset Vσ ⊆ Lσ of terms designated as values.

Given such a language L, we may define a C-structure CL as follows. Let |CL| be the
family of all sets Vσ for σ ∈ T (again relabelling if necessary as per Remark 3.2(i)). For
any K[−] : σ → τ in K, let rK ⊆ Vσ × Vτ be the relation {(M,N) | K[M] � N}, and take
CL[Vσ,Vτ] = {rK | K[−] : σ → τ}. It is easy to check that CL is endowed with identities
and supercomposition of relations.

12

From example (iii) we may now see the prototypical reason why a naturally arising C-
structure need not be closed under ordinary relational composition. If K[M] � N and
L[N] � P then L[K[M]] � P , but the term L[K[M]] might also admit reductions to
values that do not proceed via any such L[N]. For instance, in a process algebra with
parallel composition, if K[−] = Q|− and L[−] = R|−, then L[K[M]] = R|Q|M may admit
reductions which depend on R interacting directly with M .4

To give further insight into how the machinery of Example 3.3(iii) works in practice, we
briefly outline two concrete specializations, which will also feature in Example 3.8 below.

Examples 3.4 (i) Abramsky’s lazy λ-calculus [1] gives rise to a C-structure as follows.
Consider the language with a single type whose terms are just the closed terms of untyped
λ-calculus. Let →l be the lazy reduction relation generated by

(λx.M)N →l M [x 7→ N] M →l M ′ ⇒ MN →l M ′N

and let �l be its reflexive-transitive closure. As evaluation contexts, we take all syntactic
contexts of the form −N1 . . . Nk where k ≥ 0 and the Ni are closed terms; clearly these
satisfy the evaluation context condition. (Note that contexts M− will not satisfy this
condition unless we choose to add a further reduction rule.) Finally, we may take as values
all closed terms of the form λx.M . We write L for the resulting C-structure defined as in
Example 3.3(iii).

(ii) Likewise, Milner’s π-calculus gives rise to a C-structure. We assume familiarity
here with the presentation in [18]. To facilitate the construction of complex process terms,
we shall employ a formulation that allows for meta-terms Λx.P in which a single name
x has been abstracted. Specifically, terms and meta-terms are generated by the following
grammar, where x, y range over names.

Terms P,Q ::= x̄y.P | x(y).P | 0 | P |Q | !P | (y)P | Uy
Meta-terms U ::= Λx.P

Terms and meta-terms are considered modulo a structural congruence relation ≡, defined
as in Definition 3.1 of [18] with the additional clauses:

Λx.P ≡ Λy.P [x 7→ y] (Λx.P)y ≡ P [x 7→ y] P ≡ P ′ ⇒ Λx.P ≡ Λx.P ′

Thus, every term P is congruent to a Λ-free one.
A reduction relation →p is now defined on terms and meta-terms modulo ≡ as in Defi-

nition 3.2 of [18], with the additional clauses:

P →p P ′ ⇒ Λx.P →p Λx.P ′ U →p U ′ ⇒ Uy ⇒p U ′y

For Λ-free terms, this clearly coincides with the reduction relation defined in [18].
We may now consider the language whose terms are closed meta-terms U , taking �p to

be the reflexive-transitive closure of →p restricted to such meta-terms. As evaluation con-
texts, we may take the class of unguarded contexts over meta-terms, namely those generated
by composition from syntactic contexts of the form

−|Q (y)− − y Λx.−
4As a further example of some historical interest, we mention Kleene’s class of (S1)–(S9) computable par-

tial functionals of higher type, which are not closed under ordinary composition but admit supercomposites
in the present sense.

13

The definition of �p ensures that these satisfy the evaluation context condition. Finally,
as values, we take those meta-terms that cannot be further reduced via →p.

We write P for the resulting C-structure.

3.2 Simulations

Next, we introduce the notion of a simulation of one C-structure in another; this generalizes
the notion of applicative morphism introduced in Section 2.1.

Definition 3.5 Let C, D be C-structures.
(i) A simulation γ : C−−BD consist of:

• a function A 7→ γA : |C| → |D|,

• for each A ∈ |C|, a total relation γA from A to γA

such that every relation r ∈ C[A,B] is tracked by some r′ ∈ D[γA, γB]: that is,

r(a, b) ∧ γA(a, a′) ⇒ ∃b′. r′(a′, b′) ∧ γB(b, b′)

(ii) If γ, δ are simulations C−−BD, we say γ is transformable to δ, and write γ � δ, if
for each A ∈ |C| there exists t ∈ D[γA, δA] such that

γA(a, a′) ⇒ ∃a′′. t(a′, a′′) ∧ δA(a, a′′)

Remarks 3.6 (i) In accordance with the discussion of Section 2.1, we have opted for a ‘lax’
rather than a ‘strict’ notion of simulation; this is also coherent with our decision to give
primacy to lax C-structures rather than strict ones. The strict definition would incorporate
the condition

γA(a, a′) ∧ r′(a′, b′) ⇒ ∃b. r(a, b) ∧ γB(b, b′)

(ii) The definition of simulation also presents us with a choice regarding the treatment
of non-deterministic (i.e., multi-valued) relations. In the above definition, we have taken
the ‘liberal’ approach of requiring only that every possible behaviour of r on an input a
can be mirrored by r′ on any corresponding element a′; there may be additional behaviours
of r′ on a′ with no counterpart in r. In Section 5.1, we shall consider a stricter notion of
tracking, in which the range of possible behaviours of r′ on a′ precisely matches that of r
on a; this yields the notion of a tight simulation. Note that all single-valued simulations are
tight, although not all are strict. Note also that the tightness condition is vacuous if in D
every relation is single-valued.

(iii) Our definition of simulation is closely related to what is termed a lax total simulation
in [5, Section 2.2]. Indeed, if one takes C to be the base category of sets and partial func-
tions, then lax total simulations over C are basically single-valued simulations between the
corresponding C-structures, and the refinement relation between such simulations coincides
with our �. Although from our point of view the restriction to single-valued simulations is
rather severe and excludes many of our leading examples even in the untyped PCA setting
(see e.g. [12, Chapter 3]), it is at least the case that equivalence via single-valued simulations
coincides with equivalence via arbitrary ones: see Section 5.3 below.

If C is taken to be the category of sets and relations, the connection is less clear-cut:
every lax total simulation is a simulation in our sense, but not conversely.

14

Proposition 3.7 C-structures and simulations (ordered by �) form a preorder-enriched
category, which we denote by CST RUCT .

Proof: The identity simulation on a C-structure C is as expected; note that every
relation in C tracks itself. Composition of simulations is given by ‘typewise’ relational
composition: given γ : C → D and δ : D → E, the action of δ ◦ γ on |C| is just the
composition of δ and γ, and for each A ∈ |C|, the relation (δ ◦ γ)A is simply the (forwards)
relational composition γA; δγA. To see that δ◦γ is indeed a simulation, suppose r ∈ C[A,B].
Take r′ ∈ D [γA, γB] tracking r with respect to γ, and r′′ ∈ E [δγA, δγB] tracking r′ with
respect to δ; then clearly r′′ tracks r with respect to δ ◦ γ. The unit and associativity laws
for simulations are now immediate from the corresponding facts for relations.

Next we check that for any C and D, the simulations C−−BD are preordered by �.
For any such simulation γ, the transformation γ � γ is witnessed at each A ∈ C by any
superidentity relation i ∈ D [γA, γA]. Now suppose γ � δ � ε. For any A ∈ |C|, take t ∈
D [γA, δA], u ∈ D [δA, εA] witnessing γ � δ, δ � ε respectively at A, and let v ∈ D [γA, εA]
be any supercomposite of t and u. Then v witnesses γ � ε at A.

Finally, we show that composition of simulations is monotone in both arguments with
respect to �. Firstly, given γ : C−−BD and δ � δ′ : D−−BE, if t witnesses δ � δ′ at γA then
clearly t also witnesses δ ◦γ � δ′ ◦γ at A. Secondly, given γ � γ′ : C−−BD and δ : D−−BE,
if t ∈ D [γA, γ′A] witnesses γ � γ′ at A then we may take t′ ∈ E [δγA, δγ′A] tracking t with
respect to δ; we claim t′ witnesses δ ◦γ � δ ◦γ′ at A. For suppose (δ ◦γ)A(a, a′); then there
exists a∗ with γA(a, a∗) and δγA(a∗, a′), so there exists a∗∗ with t(a∗, a∗∗) and γ′(a, a∗∗).
Hence there exists a′′ with t′(a′, a′′) and δ(a∗∗, a′′), whence (δ ◦ γ′)A(a, a′′) as required. �

We conclude this subsection with some examples of simulations.

Examples 3.8 (i) Suppose A,B are TPCAs and γ : A−−BB an applicative morphism in
the sense of Section 2.2. Let A,B be the C-structures arising from A,B as in Example 3.3(i).
Then γ may clearly be viewed as a simulation A−−BB. Since the preorder � on applica-
tive morphisms clearly agrees with that on simulations, we obtain an inclusion 2-functor
T PCA → CST RUCT .

The question of which simulations A−−BB arise from applicative morphisms in this way
will be addressed in Section 5.5.

(ii) Suppose (S,L,→) and (S′, L,→′) are labelled transition systems over the same
set L of labels, and let C,C′ be the corresponding C-structures as in Example 3.3(ii). A
simulation γ : C−−BC′ is then just a certain kind of relation γ ⊆ S × S′; we say γ respects
labels if r′w′ tracks rw implies w′ = w. A label-respecting simulation is thus precisely ‘half a
bisimulation’ in the sense of concurrency theory, and γ is a bisimulation iff both γ and γop

are label-respecting simulations.
(iii) As a more substantial example, we indicate how Milner’s well-known translation

from the lazy λ-calculus to the π-calculus (see [18]) can be viewed as a simulation L−−BP.
In effect, Milner defines a compositional translation [[−]] from untyped λ-terms to π-calculus
meta-terms:

[[λx.M]] = Λu. u(x).u(v).[[M]]v
[[x]] = Λu. x̄u

15

[[MN]] = Λu. (v)([[M]]v | (x)v̄x.v̄u.[[x := N]]) (x 6∈ FV (N))
[[x := N]] = !x(w).[[M]]w

Note that if M is a λ-abstraction then [[M]] is a value (i.e. it admits no →p-reductions).
The following ‘simulation relation’ is introduced in [18, Definition 4.4]. If L is a closed

untyped λ-term and U a closed π-calculus meta-term, we write ρ(L,U) if there exist λ-
terms M,N1, . . . , Nk and distinct variables x1, . . . , xk (k ≥ 0) with FV (M) ⊆ x1, . . . , xk

and FV (Ni) ⊆ xi+1, . . . , xk such that

L ≡ M [x1 7→ N1] · · · [xk 7→ Nk]
P ≡ Λu. (x1) · · · (xk)([[M]]u | [[x1 := N1]] | · · · | [[xk := Nk]])

Restricting ρ to values, we obtain a total relation ρ from elements of L to those of P (note
that for any closed λ-abstraction L we have ρ(L, [[L]]).)

To see that ρ is a simulation L−−BP, it will suffice to show that an L-context −N is
tracked by the P-context

ΠN [−] = Λw. (v)(−v | (x)v̄x.v̄w.[[x := N]])

where x is fresh; from this it follows readily that a general L-context −N1 . . . Nk is tracked
by the corresponding composition of P-contexts. First, a simple calculation shows that if
L is a value λz.L′ and ρ(L,P), then for any closed N we have ΠN (P) �p P

′ for some P ′

with ρ(L′[z 7→ N], P ′). Secondly, it is shown by Lemma 4.5 of [18] that

• if L′[z 7→ N] →l L1 and ρ(L′[z 7→ N], P ′), then for some P1 we have P ′ �p P1 and
ρ(L1, P1);

• if ρ(L1, P1) and L1 is an abstraction, then for some value P ′1 we have P1 �p P
′
1 and

ρ(L1, P
′
1).

Putting all this together gives that if LN reduces to a value L1 and ρ(L,P), then ΠN (P)
reduces to a value P ′1 where ρ(L1, P

′
1) as required.

3.3 The Asm construction on CST RUCT
The ‘category of assemblies’ construction can be naturally generalized to C-structures.

Definition 3.9 Given a C-structure C, we define a category Asm(C) and a functor ΓC :
Asm(C) → Set as follows:

• An object X in Asm(C) is a triple (|X|, AX ,X) where |X| is a set, AX ∈ |C|, and
X⊆ AX × |X| is a relation such that for every x ∈ |X| there exists some a X x.

• A morphism f : X → Y in Asm(C) is a function f : |X| → |Y | that is tracked by
some r ∈ C[AX , AY]: that is,

a X x ⇒ ∃b. r(a, b) ∧ b Y f(x)

Identities and composition are defined as in Set.

16

• ΓC is the evident forgetful operation X 7→ |X|, f 7→ f .

It is easy to see that Asm(C) is indeed a category and ΓC is a faithful functor. We shall
always think of Asm(C) as coming equipped with the functor ΓC; in contrast to the situation
for PCAs, we cannot in general recover ΓC from Asm(C) as the functor Hom(1,−).

Once again, our notion of ‘tracking’ here involves a choice regarding the treatment of
non-determinism. The choice of definition above is consonant with Definition 3.5; when we
consider a stricter notion of simulation in Section 5.1, a more restricted notion of assembly
morphism will be appropriate.

We now investigate what structure is present in (Asm(C),ΓC). For this purpose we
introduce the following general notions.

Definition 3.10 Let C be a category, Γ a faithful functor C → Set.
(i) (C,Γ) has subobjects if for any object X in C and any mono s : S � Γ(X) in Set,

there exists a morphism s̄ : Y → X in C (necessarily mono) such that Γ(s̄) = s, and for any
morphism f : Z → X such that Γ(f) factors through s, there is a unique g : Z → Y such
that f = s̄ ◦ g.

(ii) (C,Γ) has quotients if for any object X in C and any epi q : Γ(X) � Q in Set,
there exists a morphism q̄ : X → V in C (necessarily epi) such that Γ(q̄) = q, and for any
morphism f : X → W such that Γ(f) factors through q, there is a unique g : V → W such
that f = g ◦ q̄.

(iii) (C,Γ) has copies if for any X ∈ C and S ∈ Set, there is an object X ∝ S in C
equipped with morphisms

π : X ∝ S → X θ : Γ(X ∝ S) → S

such that for any f : Z → X and φ : Γ(Z) → S there is a unique g : Z → X ∝ S with
f = π ◦ g and φ = θ ◦ Γ(g).

(iv) We say (C,Γ) is a quasi-regular category over Set if it has subobjects, quotients
and copies.

Note that the universal structures given by this definition, when they exist, are unique up to
unique isomorphism. In the context of part (i), any morphism s̄ with the required properties
is called a lifting of s to C; likewise, in part (ii), we say q̄ is a lifting of q to C. In part (iii),
an object X ∝ S with the required properties is called an S-fold copy of X.

The name ‘quasi-regular’ reflects the idea that this is as much of the structure of a
regular category as survives in this general setting (where we do not have finite products,
for instance). The existence of copies does duty for the functor ∇ : Set → Asm(A) in the
PCA case.

Proposition 3.11 (Asm(C),ΓC) is a quasi-regular category over Set.

Proof: To see that (Asm(C),ΓC) has subobjects, suppose X ∈ Asm(C) and s : S �
|X|. Let Y be the assembly defined by |Y | = S, AY = AX , and a Y y iff a X s(y); and
let s̄ = s (this is tracked by any superidentity for AX). The universal property is then easy.
(Actually, it is clear that such a lifting s̄ exists even when s is not mono.)

17

For quotients, suppose X ∈ Asm(C) and q : |X| � Q. Let V be the assembly defined
by |V | = Q, AV = AX , and a V v iff there exists x ∈ |X| with a X x and q(x) = v; and
let q̄ = q (this is tracked by any superidentity for AX). The universal property is easy.

For copies, suppose X ∈ Asm(C) and S ∈ Set. Define the assembly X ∝ S by

|X ∝ S| = |X| × S AX∝S = AX a X∝S (x, s) iff a X x.

Let π : X ∝ S → X be the first projection (this is tracked by any superidentity), and let
θ : |X ∝ S| → S be the second projection. Once again, the universal property is easy. �

Next, we see how the Asm construction may be extended to simulations.

Definition 3.12 Given a simulation γ : C−−BD, define γ∗ = Asm(γ) : Asm(C) →
Asm(D) as follows:

• On objects X, define γ∗(X) by |γ∗(X)| = |X|, Aγ∗(X) = γAX , and b γ∗(X) x iff
∃a ∈ AX .γAX

(a, b) ∧ a X x.

• On morphisms f : X → Y , define γ∗(f) = f . Note that if f is tracked by r ∈
C[AX , AY], and r is itself tracked (with respect to γ) by r′ ∈ D [γAX , γAY], then
f : γ∗(X) → γ∗(Y) is tracked by r′.

Proposition 3.13 (i) Asm(γ) is a functor Asm(C) → Asm(D), and ΓD ◦Asm(γ) = ΓC.
(ii) Asm(γ) preserves subobjects, quotients, and copies.

Proof: All parts are trivial; indeed, the structures described in the proof of Proposi-
tion 3.11 are preserved on the nose by Asm(γ). �

Finally, we show how Asm acts on transformations between simulations.

Definition 3.14 Given simulations γ � δ : C−−BD, let Asm(γ � δ) denote the natural
transformation ξ : Asm(γ) → Asm(δ) defined by ξX = id|X| : γ∗(X) → δ∗(X). (Note that
if t ∈ D[γAX , δAX] witnesses γ � δ at AX , then t tracks ξX .)

Since Asm(γ � δ) is simply the identity at the level of sets, it is clear that it is indeed a
natural transformation.

We may now put all this together.

Definition 3.15 Let ΓQREG be the (large) 2-category defined as follows:

• Objects are quasi-regular categories over Set.

• Morphisms (C,ΓC) → (D,ΓD) are functors F : C → D equipped with a natural iso-
morphism ı : ΓC ∼= ΓD ◦ F such that

– F preserves subobjects modulo ı: that is, if s̄ : Y → X is a subobject lifting of
s : S � ΓC(X), then F (s̄) : F (Y) → F (X) is a subobject lifting of ıX ◦ s ◦ ı−1

Y ;

– F preserves quotients modulo ı (the definition is similar);

18

– F preserves copies modulo ı: that is, if (X ∝ S, π, θ) is an S-fold copy of X in
C, then (F (X ∝ S), F (π), θ ◦ ı−1

X∝S) is an S-fold copy of F (X) in D.

We call such a pair (F, ı) a quasi-regular functor.

• 2-cells (F, ı) → (G,) are natural transformations α : F → G.

The following proposition addresses a couple of fine details. Again, we write ∗ for horizontal
composition.

Proposition 3.16 (i) For a quasi-regular functor (F, ı), the isomorphism ı is uniquely
determined by F (so that ı may be dropped from the data for a quasi-regular functor).

(ii) If α is any natural transformation F → G where (F, ı) and (G,) are quasi-regular
functors (C,ΓC) → (D,ΓD), then automatically (ΓD ∗ α) ◦ ı = .

Proof: (i) Suppose X ∈ C and x ∈ ΓC(X); we wish to show that ıX(x) is uniquely
determined. Let 1 be a singleton set and regard x as a morphism 1 � ΓC(X); lift this
to a morphism x̄ : Y → X in C. Since F preserves subobjects modulo ı, we have that
F (x̄) : F (Y) → F (X) is a subobject lifting of ıX ◦ x ◦ ıY . But the latter is a mapping from
a singleton set to ΓD(F (X)) that picks out ıX(x). Hence ıX(x) must be the element picked
out by ΓD(F (x̄)).

(ii) Suppose X ∈ C and x ∈ ΓC(X); we wish to show that ΓD(αX)(ıX(x)) = X(x).
Again, regard x as a morphism 1 � ΓC(X) and lift this to a morphism x̄ : Y → X in C. As
in the proof of (i) we have that ΓD(F (x̄)) picks out ıX(x) and ΓD(G(x̄)) picks out X(x).
Now applying ΓD to the naturality square for α at x̄, we have that ΓD(αX) ◦ ΓD(F (x̄)) =
ΓD(G(x̄)) ◦ ΓD(αY); and since ΓD(αY) is just a function between singleton sets, this says
that ΓD(αX)(ıX(x)) = X(x) as required. �

Theorem 3.17 The constructions of Definitions 3.9, 3.12 and 3.14 constitute a 2-functor

Asm : CST RUCT → ΓQREG

Proof: In addition to the properties already established, it is trivial that Asm respects
identity simulations, composition of simulations, identity transformations and vertical and
horizontal composition of transformations. �

Clearly, the Asm construction on C-structures agrees up to isomorphism with that on
TPCAs (as in Section 2.2) modulo the inclusion 2-functor T PCA → CST RUCT noted
under Example 3.8(i).

We conclude this subsection with a brief aside on how our notions of subobject and
quotient relate to regular monos and epis in Asm(C) (we leave the verifications as exercises).
On the one hand, all equalizers exist in Asm(C), and our subobjects are precisely the
regular monos. On the other hand, all coequalizers exist in Asm(C), and every regular epi
is a quotient morphism, though the converse does not seem to be true in general. However,
if C is endowed with cartesian products (as in Section 5.4), then the notions of quotient and
regular epi coincide.

Furthermore, for any simulation γ, the functor Asm(γ) preserves all equalizers and
coequalizers. In the light of Theorem 3.20 below, this means any quasi-regular functor
Asm(C) → Asm(D) preserves equalizers and coequalizers.

19

3.4 The correspondence theorem

We now work towards showing that the 2-functor Asm is locally an equivalence: that is, for
any C and D, the ordinary functor Asm : CST RUCT [C,D] → ΓQREG[Asm(C),Asm(D)]
is part of an equivalence of preorders. The following proposition shows that essentially every
quasi-regular functor Asm(C) → Asm(D) arises from some simulation C−−BD.

Proposition 3.18 Let F : (Asm(C),ΓC) → (Asm(D),ΓD) be a morphism in ΓQREG.
Then there is a simulation γ : C−−BD such that there is a unique natural isomorphism
Asm(γ) ∼= F .

Proof: Given F , we define γ as follows. For each A ∈ |C|, let ZA be the ‘object of
realizers’ in Asm(C) given by |ZA| = A, AZA

= A, ZA
= idA. Let WA = F (ZA), and

define γA = AWA
and γA(a, b) iff b WA

a.
To see that γ is a simulation, suppose r ∈ C[A,B]; we wish to show r is tracked by some

r′ ∈ D[γA, γB]. Let R be the relation r viewed as a subset of |ZA ∝ B| = A × B, and
lift this to a subobject ZR � ZA ∝ B. Likewise, let S be the opposite of r viewed as a
subset of |ZB ∝ A| = B × A, and lift this to a subobject ZS � ZB ∝ A. By the universal
property of the latter, the canonical bijection t : R→ S (the twist map) lifts to a morphism
t̃ : ZR → ZS which is tracked by r itself:

ZR
t̃ - ZS

ZA ∝ B
?

?

ZB ∝ A
?

?

We now apply F to this whole diagram, then replace the relevant copies and subob-
jects by the isomorphic ‘canonical’ ones in Asm(D) (i.e., those described in the proof of
Proposition 3.11):

Z ′R
t̂ - Z ′S

F (ZA) ∝ B
?

?

F (ZB) ∝ A
?

?

Note that the type of realizers for Z ′R is that of F (ZA), that is γA, and likewise the type of
realizers for Z ′S is γB. So let r′ ∈ D[γA, γB] be any relation tracking t̂. We claim that r′

tracks r with respect to γ. Indeed, suppose r(a, b) and γA(a, a′). Then a′ Z′
R

(a, b), since
γA is by definition extracted from F (ZA). So there exists b′ Z′

S
(b, a) = t̂(a, b) such that

r′(a′, b′). But now γB(b, b′) by definition of Z′
S

and γB (both are induced by F (ZB)) and
we are done.

It remains to show that γ∗ = Asm(γ) ∼= F . Consider an arbitrary X ∈ Asm(C). We
may express X as a quotient of a subobject of ZA ∝ |X|, where A = AX . Specifically, let

20

R be the subset of |ZA ∝ |X|| corresponding to X , and let q : R � |X| be the surjection
given by second projection. These lift to subobject and quotient maps in Asm(C), giving
the diagram

ZR
- - ZA ∝ |X|

X

??

Applying F to this diagram and replacing copies, subobjects and quotients in turn by
isomorphic canonical ones, we obtain a diagram

Z ′R- - F (ZA) ∝ |X|

γ∗(X)

??

So we obtain an isomorphism γ∗(X) ∼= F (X) which agrees on underlying sets with the
given isomorphism ΓC

∼= ΓD ◦ F .
To see that this isomorphism is natural in X, it now suffices to note that if f : X → Y

in Asm(C) then ΓD(γ∗(f)) = f , and ΓD(F (f)) ∼= ΓC(f) = f via the given isomorphism
ΓD ◦ F ∼= ΓC. �

We now see how the correspondence works at the level of 2-cells:

Proposition 3.19 Suppose γ, δ : C−−BD are simulations, and suppose η : γ∗ → δ∗ is a
natural transformation. Then γ � δ and η = Asm(γ � δ).

Proof: First note that by Proposition 3.16(ii), it is automatic that ΓD ∗ η = idΓC
.

For each A ∈ |C|, let ZA be the object of realizers as in the previous proof, and consider
ηZA

: γ∗(ZA) → δ∗(ZA). Suppose this is tracked by t ∈ D[γA, δA]. Since ηZA
is just the

identity on A, we have

a′ γ∗(ZA) a ⇒ ∃a′′. t(a′, a′′) ∧ a′′ δ∗(ZA) a

That is, γ(a, a′) implies ∃a′′. t(a′, a′′) ∧ δ(a, a′′). In other words, t witnesses γ � δ at A.
Again by Proposition 3.16(ii), it is automatic that ΓD ∗Asm(γ � δ) = idΓC

. So ΓD ∗η =
ΓD ∗Asm(γ � δ), and because ΓD is faithful, this means η = Asm(γ � δ). �

We now have everything that is needed for our generalized correspondence theorem,
which to some extent validates our definition of CST RUCT :

Theorem 3.20 The 2-functor Asm : CST RUCT → ΓQREG is locally an equivalence. �

21

Corollary 3.21 The C-structures C and D are equivalent in CST RUCT iff there is an
equivalence of categories (F,G) : Asm(C) ' Asm(D) with ΓD ◦ F ∼= ΓC and ΓC ◦G ∼= ΓD.

Proof: The forwards implication is immediate from Theorem 3.17 (indeed, this yields
an equivalence that commutes with Γ on the nose). For the reverse, it is easy to see that
if F and G are as above then F and G are quasi-regular functors, and so constitute an
equivalence in ΓQREG. It now follows from Theorem 3.20 that C ' D in CST RUCT . �

4 Categorical structure in CST RUCT
We now investigate some of the categorical structure available in the 2-category CST RUCT .
Although our investigation here is far from exhaustive, the picture that emerges is that
CST RUCT is considerably richer in structure than either PCA or T PCA.

If X and Y are sets of sets, we write X � Y for the set {A×B | A ∈ X,B ∈ Y }.

Proposition 4.1 CST RUCT has finite products, enriched with respect to �.

Proof: The terminal object 1 is the unique C-structure with |1| = {{∗}}. If C,D are
C-structures, define C× D by

|C× D| = |C|� |D|
(C× D)[A×B,C ×D] = C[A,C] � D[B,D]

Clearly C×D is a C-structure, and there are evident projection simulations πC : C×D−−BC
and πD : C×D−−BC. Given simulations γ : E−−BC and δ : E−−BD, we have a simulation
〈γ, δ〉 : E−−BC× D given by

〈γ, δ〉A = γA× δA

〈γ, δ〉A(e, (c, d)) ⇔ γA(e, c) ∧ δA(e, d)

Clearly this is the unique simulation such that πC ◦ 〈γ, δ〉 = γ and πD ◦ 〈γ, δ〉 = δ, and
〈γ, δ〉 � 〈γ′, δ′〉 iff γ � γ′ and δ � δ′. �

Proposition 4.2 CST RUCT has finite sums, enriched with respect to �.

Proof: The initial object 0 is the empty C-structure. As a temporary notation, for any
set A we write Ai for {i} ×A. If C,D are C-structures, define C + D by

|C + D| = {A0 | A ∈ |C|} ∪ {B1 | B ∈ |D|}
(C + D)[A0, B0] ∼= C[A,B]
(C + D)[A1, B1] ∼= D[A,B]
(C + D)[Ai, Bj] = ∅ if i 6= j

Clearly C + D is a C-structure, and there are evident inclusion simulations ιC : C−−BC + D
and ιD : D−−BC + D. Given simulations γ : C−−BE and δ : D−−BE, there is evidently a
unique simulation [γ, δ] : C+D−−BE such that [γ, δ]◦ ιC = γ and [γ, δ]◦ ιD = δ, and clearly
[γ, δ] � [γ′, δ′] iff γ � γ′ and δ � δ′. �

22

Although both these results are trivial, Proposition 4.2 already gives us something not
available in PCA or T PCA. If A,B were TPCAs over some T , for instance, the evident
disjoint union A + B would not (canonically) be a TPCA, since it would lack a type of
operations mapping Aσ to Bτ (where σ, τ ∈ T). Most probably, PCA and T PCA do not
have categorical binary sums at all.

More interestingly, it turns out that CST RUCT is very nearly cartesian closed: indeed,
for any C-structures C,D, an ‘exponential’ C-structure DC exists in a slightly weak sense
which is nonetheless sufficient to characterize DC uniquely up to equivalence in CST RUCT .
Let us begin by making the characteristic property of DC precise.

Definition 4.3 A simulation γ : C−−BD is single-valued if for any A ∈ |C| and a ∈ A,
there is a unique a′ ∈ γA with γA(a, a′).

Definition 4.4 Suppose C,D are C-structures, and we are given a C-structure F along with
a simulation eval : F×C−−BD. We call (F, eval) a near-exponential for (C,D) if for any C-
structure E and simulation α : E×C−−BD, there is a single-valued simulation ᾱ : E−−BF
such that eval ◦ (ᾱ × idC) = α, and moreover ᾱ is, up to ��, the unique single-valued
simulation with this property.

Because single-valued simulations compose and identity simulations are single-valued, it
is easy to see that a near-exponential for (C,D) is uniquely determined up to equivalence in
CST RUCT .

The rest of this section will be devoted to the proof of the following:

Theorem 4.5 CST RUCT possesses a near-exponential (DC, eval) for every (C,D).

The conceptual significance of this result is far from clear to us: if C and D represent ‘models
of computation’, what on earth does it mean to consider DC as a ‘model of computation’?
At present, the existence of near-exponentials stands as something of a curiosity, albeit a
rather striking one which offers evidence for the mathematical richness of our framework.

From now on let C and D be fixed C-structures. We start with the definition of the
C-structure DC.

Definition 4.6 (i) Given any function U : |C| → |D|, we write [C−−B UD] for the set of
simulations γ : C−−BD such that γA = U(A) for all A ∈ |C|.

(ii) A family F ⊆ [C−−B UD] of simulations is uniformly tracked if for all A,B ∈ |C|
and r ∈ C[A,B], there exists r′ ∈ D[U(A), U(B)] such that r′ tracks r with respect to every
γ ∈ F : that is,

∀γ ∈ F. r(a, b) ∧ γA(a, a′) ⇒ ∃b′. r′(a′, b′) ∧ γB(b, b′)

(Note that if F is uniformly tracked and inhabited then we can recover U from F ; we write
it as UF and call it the underlying type operation of F .)

(iii) If F ⊆ [C−−B UD] and G ⊆ [C−−B V D] are each uniformly tracked and inhab-
ited, we say R ⊆ F × G is a uniform transformation if for all A ∈ |C| there exists
t ∈ D[U(A), V (A)] such that for every (γ, δ) ∈ R we have that t witnesses γ � δ at A:
that is,

∀(γ, δ) ∈ R. γA(a, b) ⇒ ∃c. t(b, c) ∧ δA(a, c)

(iv) We now define a C-structure DC as follows:

23

• |DC| is the set of all uniformly tracked and inhabited families F of simulations C−−BD.

• For any F,G ∈ |DC|, DC[F,G] is the set of uniform transformations R ⊆ F ×G.

Proposition 4.7 DC is indeed a C-structure.

Proof: To see that DC has (super)identities, given any F ∈ |DC|, take I ⊆ F ×F to be
the identity relation. Clearly I is a uniform transformation: for any A ∈ |C|, let i be any
superidentity on UF (A); then for any γ ∈ F , i witnesses γ � γ at A. So I ∈ DC[F, F].

To see that DC has (super)composites, suppose R ∈ DC[F,G] and S ∈ DC[G,H] and
let T be the relational composition R;S. We claim T is a uniform transformation. Given
A ∈ |C|, take t ∈ D[UF (A), UG(A)] uniformly witnessing γ � δ at A for all (γ, δ) ∈ R,
and take u ∈ D[UG(A), UH(A)] uniformly witnessing δ � ε at A for all (δ, ε) ∈ S. Let
v ∈ D[UF (A), UH(A)] be any supercomposite of t and u; clearly v uniformly witnesses γ � ε
at A for all (γ, ε) ∈ T . �

Next, we must equip DC with a suitable evaluation morphism.

Definition 4.8 Let eval : DC × C−−BD be the simulation given as follows.

• The action on types is given by eval(F ×A) = UF (A).

• For each F and A, we define evalF×A ⊆ (F ×A)× UF (A) by

evalF×A((γ, a), b) ⇔ γA(a, b)

(This is a total relation since each γA is total.)

Proposition 4.9 eval : DC × C−−BD is indeed a simulation.

Proof: We wish to show that every relation R × r in (DC × C)[F × A,G × B] =
DC[F,G] � C[A,B] is tracked by some u ∈ D[UF (A), UG(B)] with respect to eval . Let s ∈
D[UF (A), UF (B)] track r uniformly with respect to all γ ∈ F , and let t ∈ D[UF (B), UG(B)]
witness γ � δ at B uniformly for all (γ, δ) ∈ R. Now let u be a supercomposite of s and t.

To see that u tracks R × r with respect to eval , suppose that ((γ, a), (δ, b)) ∈ (R × r)
and eval((γ, a), a′) — that is to say, (γ, δ) ∈ R, (a, b) ∈ r and γA(a, a′). We require b′ ∈ δB
such that u(a′, b′) and eval((δ, b), b′) — that is, δB(b, b′). Since s tracks r with respect to γ,
we may find b′′ such that s(a, b′′) and γB(b, b′′). And since t witnesses γ � δ at B, we may
find t(b′′, b′) and δB(b, b′). This gives u(a′, b′) as required. �

It remains to verify that (DC, eval) is a near-exponential for (C,D). From now on, let E
be some fixed C-structure and α : E× C−−BD some fixed simulation.

For any E ∈ |E| and any e ∈ E, let us write αe for the simulation C−−BD defined by

αeA = α(E ×A) αeA(c, d) ⇔ αE×A((e, c), d)

To see that αe is a simulation, suppose r ∈ C[A,B]. Let i be a superidentity in E[E,E];
then any t ∈ D[α(E × A), α(E × B)] that tracks i× r with respect to α also tracks r with
respect to αe. Since such a t may be chosen independently of e, the family {αe | e ∈ E} is
uniformly tracked. This justifies the following definition:

24

Definition 4.10 Let ᾱ : E−−BDC be defined as follows (we call ᾱ the transpose of α).

• For each E ∈ |E|, let ᾱE = {αe | e ∈ E} ∈ |DC|.

• For E ∈ |E| and e ∈ E, take ᾱE(e, γ) iff γ = αe.

Proposition 4.11 ᾱ is a single-valued simulation, and eval ◦ (ᾱ× idC) = α on the nose.

Proof: That ᾱ is single-valued is immediate from the definition. To see that ᾱ is a
simulation, suppose r ∈ E[E,F], and let R = {(αe, αf) | (e, f) ∈ r}. We first show that
R is a uniform transformation. Given any A ∈ |C|, let i ∈ C[A,A] be a superidentity, and
take r′ ∈ D[α(E × A), α(F × A)] tracking r × i with respect to α. We claim that for any
(e, f) ∈ r, r′ tracks αe � αf at A. For suppose αe(c, d); then α((e, c), d), so there exists g
with r(d, g) and α((f, c), g), whence αf (c, g). Thus R ∈ DC[ᾱE, ᾱF].

Next, we claim that R tracks r with respect to ᾱ. For suppose r(e, f) and ᾱ(e, γ); then
γ = αe, so taking δ = αf we have ᾱ(f, δ) and R(γ, δ).

To see that eval ◦ (ᾱ× idC) = α, note that if E ∈ |E|, C ∈ |C| and D = α(E × C) then

(eval ◦ (ᾱ× idC))E×C((e, c), d) ⇔ eval ᾱE×C((αe, c), d)
⇔ αeC(c, d)
⇔ αE×C((e, c), d) �

This already establishes that CST RUCT is at least weakly cartesian closed. To conclude
our proof that CST RUCT has near-exponentials, we need the following:

Proposition 4.12 Suppose ᾱ′ : E−−BDC is any single-valued simulation such that eval ◦
(ᾱ′ × idC) = α. Then ᾱ � ᾱ′ � ᾱ.

Proof: Suppose ᾱ′ is as above. For any E ∈ |E| and e ∈ E, write α′e for the unique
simulation C−−BD such that ᾱ′E(e, α′e). Then as in the proof of Proposition 4.11, we have
α′eC(c, d) iff αeC(c, d). So α′e = αe, though ᾱE and ᾱ′E may be different. However, we
have shown that ᾱ′(e, αe) for each e, so we know that ᾱE = {αe | e ∈ E} ⊆ ᾱ′E. So we
may consider ᾱE × ᾱE as a subset of ᾱE × ᾱ′E, or of ᾱ′E × ᾱE. In either case, ᾱE × ᾱE
is a uniform transformation, being witnessed by superidentities everywhere, and so is an
element of both DC[ᾱE, ᾱ′E] and DC[ᾱ′E, ᾱE]. The first of these witnesses ᾱ � ᾱ′ at E;
the second ᾱ′ � ᾱ at E. Since E ∈ |E| was arbitrary, we have ᾱ � ᾱ′ � ᾱ. �

This completes the proof of Theorem 4.5. However, it is worth noting that a little more
may be said about the morphism ᾱ:

Proposition 4.13 Suppose ᾱ′ : E−−BDC is any simulation (not necessarily single-valued)
such that eval ◦ (ᾱ′ × idC) = α. Then ᾱ′ � ᾱ.

Proof: Suppose ᾱ′ is as above. Given E ∈ |E| and e ∈ E, let ε be any simulation
C−−BD such that ᾱ′E(e, ε). Then we have the sequence of implications

εC(c, d) ⇒ eval ᾱ′E×C((ε, c), d)
⇒ (eval ◦ (ᾱ′ × idC))E×C((e, c), d)
⇒ αE×C((e, c), d)
⇒ αeC(c, d)

25

So at any C ∈ |C|, ε � αe is witnessed at C by a superidentity on α(E ×C), independently
of e. So let R ⊆ α′E×αE be the relation {(ε, αe) | e ∈ E, (e, ε) ∈ ᾱ′E}; then R is a uniform
transformation and witnesses ᾱ′ � ᾱ at E. Since E is arbitrary, we have ᾱ′ � ᾱ. �

We remark in passing that even for relatively simple C and D, the structure of DC may
be wildly intractable. For instance, if K1 denotes Kleene’s first model (the PCA of natural
numbers with Kleene application) then KK1

1 would appear to be at least as complicated as
the lattice of Turing degrees, probably much worse. A possibility for a radically cut-down
version of our near-exponentials will be briefly mentioned in Section 6.2.

Finally, it is natural to ask whether our near-exponential construction can be adapted
to yield genuine exponentials in some suitable subcategory. Indeed (as suggested by the
anonymous referee) one can achieve something of this kind by working in the 2-category of
C-structures and single-valued simulations. In this case, one should of course define |DC| to
consist only of uniformly tracked and inhabited families of single-valued simulations; once
this is done, the evaluation morphism is indeed single-valued, as is the transpose ᾱ of a
single-valued morphism α. However, this still only makes DC a ‘pseudo-exponential’, since
the uniqueness property of ᾱ holds only up to ��. (Of course, one can then get a category
with genuine exponentials by quotienting modulo �� if so desired.) Moreover, the possible
conceptual significance of this ‘single-valued exponential’ is at present no clearer to us than
that of the full one.

5 Some subcategories of CST RUCT
There are many natural subcategories of CST RUCT that one might consider. In [12, Chap-
ter 2] we showed how certain specific properties of PCAs and of applicative morphisms were
reflected by categorical properties of the corresponding categories and functors; here we see
how a similar though somewhat richer story may be told for C-structures and simulations.

Sections 5.1–5.3 explore some simple properties of C-structures and of simulations that
do not involve any additional structure on the class of datatypes. In Section 5.1 we inves-
tigate the alternative treatment of non-determinism alluded to in Remark 3.6(ii) above —
this leads us to the 2-category of tight C-structures and tight simulations between them. In
Section 5.2 we consider the important subclass of deterministic C-structures (those in which
all operations are partial functions) — here the tight/non-tight distinction vanishes com-
pletely. In Section 5.3, we revisit two properties of simulations that played an important role
in [12, Chapter 2], namely discreteness and projectivity (here called univalence). As a cul-
mination of this section, we obtain a useful property of equivalences between C-structures:
these always consist of discrete, univalent simulations.

In the remaining two subsections, we discuss C-structures whose class of datatypes carries
some additional structure. In Section 5.4 we briefly consider C-structures equipped with
product types; this is a necessary preliminary to Section 5.5, where we develop the theory of
higher-order C-structures. It is here that we make good an earlier promise and show how
the theory of TPCAs may be recovered as a special case of our more general theory: roughly
speaking, deterministic higher-order C-structures correspond closely to relative TPCAs.

26

5.1 Tightness

We begin by exploring the alternative approach to non-determinism mentioned earlier. The
basic idea here is that if a relation r′ is meant to ‘simulate’ some relation r, it is reasonable
to require that r′ admits only as much non-determinism as r does; a simulation with this
property is called tight. As we shall see, a satisfactory analogue of our entire theory may be
obtained by consistently ‘tightening’ all our definitions, and whilst this involves a little more
technical detail, in some respects this alternative theory enjoys more pleasant properties
than the original. (Our use of the term ‘tight’ is similar in spirit to, though technically
different from, its use in [5].)

Definition 5.1 (i) A C-structure C is called tight if

• for any A ∈ |C|, the identity relation idA is present in C[A,A];

• for any r ∈ C[A,B] and s ∈ C[B,C], there exists t ∈ C[A,C] such that

a ∈ dom(r; s) ⇒ (t(a, c) ⇔ ∃b. r(a, b) ∧ s(b, c))

(ii) A simulation γ : C−−BD is tight if every r ∈ C[A,B] is tightly tracked by some
r′ ∈ D[γA, γB]: that is, r′ tracks r in the usual sense, and

r(a, b) ∧ γ(a, a′) ∧ r′(a′, b′) ⇒ γ(b, b′)

(iii) Given γ, δ : C−−BD, we say γ is tightly transformable to δ, and write γ �t δ, if
for each A ∈ |C| there exists t ∈ D[γA, δA] such that

γA(a, a′) ⇒ (∃a′′. t(a′, a′′)) ∧ (∀a′′. t(a′, a′′) ⇒ δA(a, a′′))

A tight C-structure still need not be closed under relational composition, since in part (i)
of the above definition the domain of t may be larger than that of r; s. Whilst in principle
one could consider tight simulations between non-tight C-structures, there would appear to
be little merit in doing so. It is routine to check that tight C-structures, tight simulations
and tight transformations between them constitute a preorder-enriched category, which we
denote by CST RUCT t. We say C,D are tightly equivalent, and write C 't D, if they are
equivalent in CST RUCT t.

We may also apply the concept of tightness to morphisms of assemblies.

Definition 5.2 A morphism f : X → Y in Asm(C) is called tight if it is tightly tracked
by some r ∈ C[AX , AY]: that is, r tracks f in the usual sense, and

a X x ∧ r(a, b) ⇒ b Y f(x)

If C is tight, it is easy to check that assemblies and tight morphisms constitute a wide sub-
category of Asm(C), which we denote by Asmt(C). The relationship with tight simulations
is given by the following:

27

Proposition 5.3 (i) Suppose C,D are tight C-structures. A simulation γ : C−−BD is tight
iff γ∗ = Asm(γ) maps tight morphisms to tight morphisms.

(ii) Suppose γ, δ : C−−BD are tight simulations between tight C-structures, and γ � δ.
Then γ �t δ iff all components of Asm(γ � δ) are tight morphisms.

Proof: (i) Suppose γ is tight. If r tightly tracks f : X → Y in Asm(C), and r′ tightly
tracks r with respect to γ, it is easy to check that r′ tightly tracks γ∗(f) in Asm(D). Con-
versely, suppose γ∗ preserves tight morphisms, and suppose r ∈ C[A,B]. Define assemblies
X,Y as follows:

|X| = |Y | = dom r, AX = A, AY = B, a′ X a ⇔ a′ = a, b Y a ⇔ r(a, b)

Let f : X → Y be the identity function on dom r; clearly this is tightly tracked by r itself.
So γ∗(f) is tightly tracked by some r′, and it is easy to see that this r′ tightly tracks r with
respect to γ.

(ii) Let ξ = Asm(γ � δ). First, suppose γ �t δ, and consider the morphism ξX for
an arbitrary assembly X ∈ Asm(C). Take t ∈ D[γAX , δAX] that tightly witnesses γ � δ
at AX ; then t tightly tracks ξX . Conversely, suppose every ξX is tight, and consider an
arbitrary A ∈ |C|. Let ZA be the object of realizers given by |ZA| = A, AZA

= A, ZA
= idA,

and suppose r tightly tracks ξZA
; then r tightly witnesses γ � δ at A. �

In fact, by considering Asmt(C) as a category in its own right, we may obtain a ‘tight’
analogue of our theory which makes no reference to Asm(C). If C is tight, then clearly all
the subobject, quotient and copy projection morphisms appearing in the proof of Proposi-
tion 3.11 are tight, and it is easy to see that the relevant universal properties still hold within
Asmt(C). So (Asmt(C),ΓC) is a quasi-regular category. Moreover, the above proposition
shows that if γ is a tight simulation between tight C-structures, then Asm(γ) restricts to a
functor Asmt(γ) : Asmt(C) → Asmt(D), and that if γ �t δ then Asm(γ � δ) constitutes
a natural transformation between such functors. We thus have a 2-functor

Asmt : CST RUCT t → ΓQREG

Furthermore, the analogue of Theorem 3.20 holds:

Theorem 5.4 The 2-functor Asmt is locally an equivalence. Hence C 't D iff Asmt(C),
Asmt(D) are equivalent in ΓQREG.

Proof: The proof of Theorem 3.20 goes through in the tight setting with minor adjust-
ments. �

The categorical structure investigated in Section 4 also carries over to CST RUCT t.
Firstly, CST RUCT t clearly inherits the finite products and sums described in Proposi-
tions 4.1 and 4.2, so that the inclusion CST RUCT t → CST RUCT preserves this structure.
Secondly, CST RUCT t possesses near-exponentials analogous to, but different from, those
of CST RUCT , so that these are not preserved by the inclusion. Specifically, to construct
DC within CST RUCT t, one should take |DC| to be the set of all inhabited and uniformly
tightly tracked families of simulations C−−BD, and DC[F,G] to be the set of uniform tight
transformations R ⊆ F×G. The proof of Theorem 4.5 then goes through mutatis mutandis.

28

A few minor gaps in this story should be noted. There does not seem to be a simple
categorical characterization of the tight assembly morphisms among those of Asm(C), nor
of those functors that preserve tight morphisms. Likewise, the property that C is tight
does not seem to be mirrored by any particular categorical property of Asm(C); indeed, we
conjecture that a tight C-structure may be equivalent in CST RUCT to a non-tight one.

5.2 Deterministic C-structures

A class of C-structures it is very natural to consider consists of those that model determinis-
tic flavours of computation. We here show that this is a mathematically well-behaved class
from the point of view of our theory.

Definition 5.5 A C-structure C is deterministic if for any r ∈ C[A,B] we have

r(a, b) ∧ r(a, b′) ⇒ b = b′

Thus, deterministic C-structures are those in which the ‘relations’ are partial functions.
We write r · a for the unique b such that r(a, b) if one exists. For such structures, the
tight/non-tight distinction evaporates completely. For example, if D is deterministic then
not only is D tight, but every simulation C−−BD is tight, as is every transformation γ � δ
where γ, δ : C−−BD. Furthermore:

Proposition 5.6 A C-structure D is deterministic iff Asm(D) = Asmt(D).

Proof: If D is deterministic and r tracks f : X → Y in Asm(D), then for any a X x
there is exactly one b with r(a, b), so r tracks f tightly and f ∈ Asmt(D). Conversely, if D
is not deterministic, take r ∈ D[A,B] and a ∈ A, b, b′ ∈ B with r(a, b), r(a, b′) and b 6= b′,
and consider the assemblies X,Y defined by

|X| = |Y | = {b, b′}, AX = A, AY = B, a′ X x ⇔ a′ = a, b′′ Y y ⇔ b′′ = y

Then the identity map X → Y is tracked by r, but cannot be tightly tracked by any
r′ ∈ D[A,B]. �

Deterministic C-structures form a full sub-2-category of both CST RUCT and CST RUCT t,
which we denote by CST RUCT d. Moreover, the class of deterministic C-structures is closed
under equivalences in CST RUCT t:

Proposition 5.7 If D is deterministic and C ' D in CST RUCT t, then C is deterministic.

Proof: Clearly an equivalence in CST RUCT t is also an equivalence in CST RUCT , so
by the 2-functoriality of Asmt and Asm, if C ' D in CST RUCT t then both Asmt(C) '
Asmt(D) and Asm(C) ' Asm(D). Moreover, the equivalences are easily seen to commute
with the inclusions Asmt(−) → Asm(−). But if D is deterministic then Asmt(D) is the
whole of Asm(D), whence Asmt(C) = Asm(C) and C is deterministic by Proposition 5.6.
�

29

This says in effect that ‘determinism’ is indeed an invariant property of a computability
notion with respect to tight equivalences. We do not know whether this is the case for
equivalences in CST RUCT .

Deterministic C-structures are generally pleasant to work with since they allow many of
the basic definitions to be significantly simplified. For instance, treating relations as partial
functions, the notion ‘r′ tracks r with respect to γ’ may be expressed as

γA(a, a′) ∧ r(a) ↓ ⇒ γB(r · a, r′ · a′)

and ‘t witnesses γ � δ at A’ may be expressed as

γA(a, a′) ⇒ γA(a, t · a′)

The definition of morphism in Asm(C) may similarly be simplified.
Clearly the class of deterministic C-structures is closed under finite products and sums.

Unfortunately they are not closed under the near-exponentials of Definition 4.6 (or their
tight counterparts); however, it turns out that CST RUCT d is endowed with its own ‘near-
exponentials’ in a somewhat weaker sense. Let us here say a simulation E × C−−BD is
left-injective if for any E ∈ |E|, the simulations αe for e ∈ E are all distinct.

Theorem 5.8 If C,D are deterministic C-structures, there exist a deterministic C-structure
F and a left-injective simulation eval : F × C−−BD with the following property: for any
left-injective α : E × C−−BD there is a single-valued simulation ᾱ : E−−BF such that
eval ◦ (ᾱ × idC) = α, and moreover ᾱ is unique up to �� among simulations with this
property.

Proof sketch: Take |F| to be the set of all inhabited, uniformly tracked families of
simulations as before, and for F,G ∈ |F|, define F[F,G] to be the set of single-valued uniform
transformations R ⊆ F ×G. The rest of the argument then proceeds essentially as before;
the significance of left-injectivity is that in the proof of Proposition 4.11, we need to know
that if r ∈ F[E,F] is single-valued then so is R = {(αe, αf) | (e, f) ∈ r}. �

Note that even this weaker universal property is still sufficient to characterize the C-
structure F up to equivalence, so that we may speak of the near-exponentiation of deter-
ministic C-structures as a well-defined operation on deterministic notions of computability.

5.3 Discrete and univalent morphisms

Among the properties of simulations considered in [12] in the PCA setting were two prop-
erties known as discreteness and projectivity. We here consider the analogues of both these
properties, changing the name of the latter to univalence, for reasons to be explained. Each
of these properties of simulations is naturally correlated with a property of assemblies.

Definition 5.9 (i) A simulation γ : C−−BD is called discrete if γA(a, b) and γA(a′, b)
imply a = a′.

(ii) An assembly X over C is discrete if a X x and a X x′ imply x = x′. (Such
assemblies are also known as modest sets.)

30

The following is straightforward:

Proposition 5.10 A simulation γ is discrete iff Asm(γ) preserves discrete objects. �

When C is tight, the discrete objects may be characterized categorically within Asmt(C)
(whence the functors Asmt(γ) arising from discrete simulations may also be characterized
categorically). By a singleton assembly we mean any assembly U such that Γ(U) is a
singleton set.

Proposition 5.11 Suppose C is tight. An assembly X over C is discrete iff for every sin-
gleton object U and set S, every morphism U ∝ S → X in Asmt(C) is constant.

Proof: The forwards implication is straightforward. For the converse, if X is not
discrete, take x 6= x′ and a such that a X x and a X x′. Let U be the singleton assembly
with just the realizer a, let S be a two-element set, and let f : U ∝ S → X map the two
elements of |U ∝ S| to x and x′ respectively. Since C is tight, f is tightly tracked by the
appropriate identity relation, and so is a non-constant morphism of Asmt(C). �

There does not appear to be a correspondingly simple characterization of the discrete objects
within Asm(C). It is also worth noting that the tight setting preserves a familiar feature
from the classical theory of realizability: namely, that a morphism into a discrete assembly
is uniquely determined by any tracker for it.

Two further facts about discrete simulations in the tight setting is worth recording. The
proofs are straightforward.

Proposition 5.12 (i) If γ : C−−BD and δ : D−−BC are tight simulations with δ◦γ � idC,
then γ is discrete.

(ii) If γ : C−−BD is discrete and D is deterministic, then C is deterministic. �

Combining the two halves of this yields a useful strengthening of Proposition 5.7.
Next, we consider a property of simulations we shall call univalence. Although the name

is perhaps not ideal, the intuition is that these are simulations that are ‘essentially single-
valued’. This notion comes in a non-tight and a tight flavour. The notion of a single-valued
simulation was defined in Definition 4.3; similarly, we call an assembly X single-valued if
for each x ∈ |X| there is a unique a with a X x.

Definition 5.13 (i) A simulation γ : C−−BD is univalent [resp. tightly univalent] if for
some single-valued simulation γ′ we have γ �� γ′ [resp. γ �t�t γ

′].
(ii) An assembly X over C is univalent [resp. tightly univalent] if for some single-valued

assembly X ′ we have X ∼= X ′ in Asm(C) [resp. in Asmt(C)].

Proposition 5.14 (i) γ : C−−BD is univalent iff Asm(γ) preserves univalent assemblies.
(ii) γ is tightly univalent iff Asmt(γ) preserves tightly univalent assemblies.

Proof: (i) The forwards implication is easy. For the reverse, suppose γ∗ = Asm(γ)
preserves univalent assemblies. For each A ∈ |C|, let ZA ∈ Asm(C) be the corresponding
object of realizers, and choose YA ∈ Asm(D) single-valued such that |YA| = A and YA

∼=

31

γ∗(ZA) via the identity on underlying sets. Define γ′ : C−−BD by γ′A(a, b) ⇔ b YA
a. We

need to show that γ′ is a simulation; it is then clear that γ′ is single-valued and γ �� γ′.
Given r ∈ C[A,B], construct the following diagram in Asm(C) as in the proof of Propo-

sition 3.18:

ZR
t̃ - ZS

ZA ∝ B
?

?

ZB ∝ A
?

?

Apply γ∗ to obtain a diagram ∆ in Asm(D). Now construct a diagram ∆′ in Asm(D)
isomorphic to ∆ as follows: replace γ∗(ZA), γ∗(ZB) by YA, YB respectively, then replace the
copies and subobjects in turn by the corresponding canonical ones in Asm(D). Let f be
the morphism in ∆′ corresponding to γ∗(t̃) in ∆, and take r′ tracking f . It is easy to see
that r′ tracks r with respect to γ′.

The proof of (ii) is similar. �

In contrast to the situation for discrete assemblies, it is the non-tight setting that seems
more friendly to univalent assemblies. This is illustrated by the following categorical char-
acterization of univalent objects within Asm(C) (the proof involves the Axiom of Choice):

Proposition 5.15 An assembly X over C is univalent iff (in Asm(C)) for every morphism
f : X → Z and every quotient morphism h : Y � X there exists f̄ : X → Y such that
h ◦ f̄ = f .

Proof: First suppose X is univalent; we may as well assume it is single-valued. Suppose
f and h are as above with f tracked by r. We define f̄ as follows: For each x ∈ |X|, choose
some a ∈ AX and b ∈ AZ such that a X x, b Z f(x) and r(a, b); then choose y ∈ |Y | such
that h(y) = f(x) and b Y y, and set f̄(x) = y. Clearly f̄ is tracked by r and h ◦ f̄ = f .

For the converse, suppose X has the given quotient property, and consider the assembly
Y where |Y | is the relation X considered as a set of pairs (a, x), and a′ Y (a, x) iff
a′ = a. Let h : Y � X be the quotient map given by second projection (this is tracked by
a superidentity), and let f : X → X be the identity morphism. Take f̄ : X → Y such that
h◦f̄ = f . Consider the image of f̄ as a subset of |Y |, and lift this to a subobject s : X ′ � Y ;
then f̄ factors through s and we have an isomorphism X ∼= X ′ with X ′ single-valued. �

Remark 5.16 In the PCA setting, the quotient maps are precisely the regular epis, so the
quotient property featuring in the above proposition is precisely the property of being a
(regular) projective. For this reason, univalent simulations and assemblies were referred to
as projective in [12]. However, we hesitate to adopt this terminology in our present setting,
not only because not all quotients need be regular epis in general, but also because there
does not appear to be an analogue of the above proposition for Asmt(C).

The following useful fact generalizes Theorem 2.5.3(ii) of [12]:

32

Theorem 5.17 Suppose D is deterministic. If γ : C−−BD and δ : D−−BC are simulations
with δ ◦ γ � idC and idD � γ ◦ δ, then δ is univalent.

Proof: For each B ∈ |D|, take uB ∈ D[B, γδB] tracking idD � γ ◦ δ at B. Since D is
deterministic, for each b ∈ B there is a unique db with uB(b, db), and it satisfies (γδ)B(b, db).
Moreover, there is a unique cb ∈ δB with δB(b, cb) and γδB(cb, db), since γ is discrete by
Proposition 5.12. Define δ′ : D−−BC by δ′B(b, c) ⇔ c = cb. We shall show that δ, δ′ are
‘intertransformable’ as relations, and hence that δ′ is a simulation.

Clearly δ′B(b, c) implies δB(b, c). Conversely, if δB(b, c), take u′B ∈ C[δB, δγδB] tracking
uB with respect to δ; then for some c′ ∈ δγδB we have u′B(c, c′) and δγδB(db, c

′), whence
(δγ)δB(cb, c′). Now take tB tracking δ ◦ γ � idC at δB ; then tB(c′, cb). So taking vB ∈
C[δB, δ′B] a supercomposite of u′B and tB , we have that vB(c, cb). It is now easy to see
that δ′ is a simulation: for any r ∈ D[A,B], take r′ ∈ C[δA, δB] tracking r with respect to
δ, and take r′′ ∈ C[δ′A, δ′B] a supercomposite of r′ and vB (noting that δ′A = δA); then
clearly r′′ tracks r with respect to δ′. Moreover, δ′ � δ is tracked at B by a superidentity,
and δ � δ′ is tracked at B by vB . �

Corollary 5.18 If C ' D in CST RUCT d, then both halves of the equivalence are discrete
and univalent; hence there is an equivalence C ' D consisting of single-valued simulations.
�

In the light of Remark 3.6(ii), this shows that for deterministic C-structures, our notion
of equivalence agrees precisely with the lax simulation equivalence of [5] (taking sets and
partial functions as the base category). As shown in [12, Chapter 3], knowing that equiva-
lences, when they exist, can be assumed to be single-valued is often helpful for proving the
inequivalence of two models.

Note also that if C,D are strict deterministic C-structures, the above argument can be
adapted to show that an equivalence consisting of strict simulations can be replaced by one
consisting of strict single-valued simulations; the resulting notion thus agrees with the strict
simulation equivalence of [5].

5.4 C-structures with products

We now turn to consider C-structures in which the class of datatypes carries some additional
structure.

We regard it as a matter of some pride that our theory so far has not required our
C-structures to be endowed with products of any kind. Nevertheless, most naturally arising
C-structures do have products of some kind, so it is natural to consider various possible
notions of product structure. This is also a necessary prerequisite for the notion of a higher
order C-structure, which we investigate in the next subsection.

We opt here for a simple notion of product types with a relatively ‘strict’ flavour.

Definition 5.19 Suppose C is a C-structure.
(i) We say C is strict monoidal if

• |C| contains the singleton set I = {∗} and is closed under set-theoretic binary products;

• for any r ∈ C[A,B] and s ∈ C[C,D], the relation ‘r× s’ is present in C[A×C,B×D];

33

• the canonical bijections (A × B)× C ∼= A × (B × C), I × A ∼= A and A × I ∼= A are
all present as relations in C in both directions.

(ii) We say C has strict cartesian if, in addition to the above, the canonical projection
and diagonal maps A×B → A, A×B → B, A→ A×A are present as relations in C.

Other more relaxed notions of monoidal or cartesian C-structure may be devised, but
it is typically the case that any such C-structure will be equivalent to a strict one (we
refrain from going into details here). For example, all TPCAs (including untyped PCAs)
are equivalent to strict cartesian C-structures, although they may not be such structures
themselves.

Clearly, if C is strict monoidal [resp. strict cartesian] then Asm(C) is a monoidal [resp.
cartesian] category (and similarly for Asmt(C) in the case that C is tight).

The relevant structure-respecting simulations for strict monoidal C-structures are the
following:

Definition 5.20 Suppose C,D are strict monoidal. A simulation γ : C−−BD is monoidal
if

• for any A,B ∈ |C| there is a relation t ∈ D[γA× γB, γ(A×B)] such that

γA(a, a′) ∧ γB(b, b′) ⇒ ∃c′. t((a′, b′), c′) ∧ γA×B((a, b), c′)

• there exists u ∈ D[I, γI] such that u(∗, a) for some a I ∗.

Recall that if (C,⊗, I) and (D,⊗′, I ′) are monoidal categories, a lax monoidal functor
between them is a functor F : C → D together with a family of morphisms φA,B : F (A)⊗′
F (B) → F (A⊗ B), natural in A and B, and a morphism ψ : I ′ → F (I), such that certain
coherence conditions involving the associativity and unit morphisms are satisfied. We record
the following easy fact without proof:

Proposition 5.21 Suppose C,D are strict monoidal. A simulation γ : C−−BD is monoidal
iff Asm(γ) is lax monoidal.

Note also that if the products in C,D are cartesian, then a lax monoidal functor Asm(γ)
is automatically cartesian (i.e. preserves finite products).

We may write CST RUCT m for the preorder-enriched category of strict monoidal C-
structures and monoidal simulations. We say C,D are monoidally equivalent (C 'm D) if
they are equivalent in CST RUCT m (it does not seem that C ' D implies C 'm D). The
2-category CST RUCT m has finite products as in CST RUCT , and it is routine to verify that
a monoidal analogue of the construction of near-exponentials goes through. Note, however,
that our simple construction of finite sums is not available in CST RUCT m, since C+D will
not typically contain products A×B where A ∈ |C|, B ∈ |D|.

Finally, we remark that analogous results hold in the ‘tight’ setting. If C and D are
tight and strict monoidal, we may say a tight simulation γ : C−−BD is tightly monoidal if
it satisfies the obvious tightened version of Definition 5.20. We then have that γ is tightly
monoidal iff Asmt(γ) is lax monoidal; such a functor is automatically cartesian if C and D
are. The corresponding 2-category CST RUCT mt enjoys properties similar to CST RUCT m.

34

5.5 Higher order C-structures

With the machinery of products now in place, we may now identify a class of C-structures
that model higher order notions of computation, and thus retrieve the theory of TPCAs as
a special case of our theory. The key idea here is that a C-structure is higher order if its
computable operations can themselves be represented as values of an appropriate type.

Definition 5.22 A higher order C-structure is a strict monoidal C-structure C equipped
with the following: for each A,B ∈ |C|, a datatype (A ⇒ B) ∈ |C| and an operation
appAB ∈ C[(A⇒ B)×A,B] such that

for any r ∈ C[C × A,B] there exists a total relation r̄ ∈ C[C, (A ⇒ B)] with
r ⊆ (r̄ × idA); appAB.

It is crucial here that r̄ is not required to be unique; we may therefore say appAB enjoys a
‘weak universal property’.

It is not hard to show that if C is a C-structure [resp. cartesian C-structure] then Asm(C)
is monoidal closed [resp. cartesian closed]. Thus, as is often the case in realizability, the
Asm construction turns a weak universal structure into a strong one.

Any TPCA C may be turned into a deterministic, higher order cartesian C-structure
CStr(C) as follows. First, it is easy to construct some C ′ equivalent to C (within T PCA)
in which product types are genuine set-theoretic products, and in which a unit type exists.
Such a C ′ may then be viewed as a C-structure CStr(C) as in Example 3.3(i). Clearly
CStr(C) is deterministic and cartesian, and for any types A,B, the element

λ∗p. (fst p)(snd p) ∈ (((A⇒ B)×A) ⇒ B)

induces a computable operation appAB : (A⇒ B)×A ⇀ B with the required weak universal
property. (We assume familiarity here with the λ∗ notation for combinators — see e.g. [12,
Chapter 1].)

In one important respect, however, deterministic higher order cartesian C-structures are
significantly more general than TPCAs. In C-structures of the form CStr(C), every element
a of any A ∈ |C| is picked out by some operation in C[I,A] (We may call such elements
computable, since the intuition is that mappings in C[I,A] are ‘computable operations’.)
In general, however, this need not be the case — rather, the elements picked out by such
operations will constitute a sub-C-structure of C in an evident sense. This amounts to the
observation that deterministic higher order cartesian C-structures naturally embrace the
concept of relative realizability (see e.g. [3]). Informally, the idea behind relative realizability
is to consider (for instance) a TPCA A equipped with a sub-TPCA A] of elements we regard
as ‘computable’. Under certain strictness assumptions,5 it can be shown that deterministic
higher order cartesian C-structures correspond exactly to TPCAs equipped with such a
choice of sub-TPCA.

In any case, this convergence between TPCAs and certain C-structures suggests how
the notion of applicative morphism for TPCAs (as in Section 2.2) might be generalized to
arbitrary higher order C-structures:

5Specifically, strict TPCAs endowed with such a sub-TPCA correspond precisely to deterministic higher
order C-structures in which the operation r̄ satisfies r = (r̄ × idA); appAB .

35

Definition 5.23 Suppose C,D are higher order C-structures. An applicative morphism
γ : C → D consists of a mapping A 7→ γA : |C| → |D| and a family of total relations
γA ⊆ A× γA (for A ∈ |C|) satisfying the following conditions:

1. For every computable element a ∈ A (where A ∈ |C|) there is some computable a′ ∈ γA
such that γ(a, a′).

2. ‘Application in C is tracked in D’: that is, for any A,B ∈ |C|, we may choose appAB ∈
C[(A ⇒ B) × A,B] as in Definition 5.22 such that for some app′AB ∈ D[γ(A ⇒
B)× γA, γB] we have

γ(A⇒B)(f, f ′) ∧ γA(a, a′) ∧ appAB((f, a), b) ⇒ ∃b′. γB(b, b′) ∧ app′AB((f ′, a′), b′)

If C,D are TPCAs, it is easy to see that applicative morphisms CStr(C) → CStr(D)
in the above sense correspond exactly to applicative morphisms C −−BD in the sense
of Section 2.2. Indeed, if r ∈ Dγ(A⇒B)⇒γA⇒γB tracks ·AB in the TPCA sense, then
λ∗p. r(fst p)(snd p) induces a suitable operation app′AB ∈ CStr(D)[(A ⇒ B) × A,B]; con-
versely, any such operation app′AB is induced by some r′ ∈ Dγ(A⇒B)×γA⇒γB , and then
λ∗fa. r′(pair f a) tracks ·AB in the TPCA sense. So Definition 5.23 is a natural and direct
generalization of the TPCA notion of applicative morphism.

The connection with simulations is now given by the following:

Proposition 5.24 If C,D are higher order C-structures, then the applicative morphisms
from C to D are exactly the monoidal simulations C−−BD.

Proof: First suppose γ is a monoidal simulation. To see that condition 1 of Defini-
tion 5.23 is satisfied, note that if a ∈ A is picked out by r ∈ C[I,A] and r is tracked by
r′ ∈ D[γI, γA], then by supercomposing r with the operation u ∈ D[I, γI] from Defini-
tion 5.20 yields an operation in D[I, γA] that picks out a γ-realizer for a. For condition 2,
given any A,B ∈ |C| we have an operation t ∈ D[γ(A ⇒ B) × γA, γ((A ⇒ B) × A)] as in
Definition 5.20, and an operation u ∈ D[γ((A⇒ B)×A), γB] tracking the operation appAB

in C. Supercomposing these gives an operation app′AB ∈ D[γ(A ⇒ B) × γA, γB] with the
required properties.

Conversely, suppose γ is an applicative morphism. Given any r ∈ C[A,B], supercompose
with the bijection in C[I × A,A] to obtain r′ ∈ C[I × A,B], then choose r̄ ∈ C[I, (A⇒ B)]
as in Definition 5.22. Let f ∈ (A ⇒ B) be any computable element picked out by r̄;
then by condition 1 of Definition 5.23, we may find f ′ ∈ γ(A ⇒ B) picked out by some
t ∈ D[I, γ(A ⇒ B)] such that γ(A⇒B)(f, f ′). By supercomposing the canonical operation
in D[A, I × A] with t × i ∈ D[I × A, (A ⇒ B) × A] and then with app′AB , we obtain an
operation in D[A,B] that tracks r. �

The basic idea here — that if the application operations are tracked then so are all
operations — is one that also plays an important role in [4].

Under the above correspondence, it is easy to see that the preorder � on monoidal
simulations agrees precisely with the one on applicative morphisms as in Section 2.2.
Thus, the CStr construction outlined above extends to a 2-functor CStr : T PCA →
CST RUCT m which is locally an equivalence. (Hence two TPCAs A,B are equivalent iff

36

CStr(A),CStr(B) are equivalent as monoidal C-structures.) Moreover, as noted earlier,
the Asm construction on TPCAs agrees with that on C-structures modulo this inclusion.

The observation that the notion of applicative morphism is in essence a ‘first order’ one
highlights a significant philosophical point. One might have supposed that two models of
higher order computation could be equivalent as ‘flattened’ first order models but differ non-
trivially on account of the different higher order structures they carried. Proposition 5.24
shows that this is not the case, at least within our present framework: equivalence of higher
order models is simply their equivalence qua first order models.

Note, however, that the class of higher order C-structures appears to have poor clo-
sure properties by comparison with that of all C-structures. Not only are higher order
C-structures not closed under finite sums, but they do not appear to admit an analogue of
our near-exponential construction. Curiously, then, it is the shift from higher order to first
order structures that allows ‘higher order’ phenomena to appear at the framework level.

Finally, we remark briefly on the ‘tight’ counterpart of the above results. The above
definition of higher order C-structure is still appropriate in the tight setting, but there is
an obvious tight analogue of Definition 5.23 in the case where C,D are tight higher-order
C-structures. The analogue of Proposition 5.24 then goes through: the tight applicative
morphisms from C to D are exactly the tightly monoidal simulations as discussed at the end
of Section 5.4. Of course, the ordinary and the tight versions of these results are equally
good as generalizations of the theory of TPCAs, since the latter fall within the realm of
deterministic C-structures.

6 Conclusions and further work

6.1 Summary of achievements

In this paper, we have presented a broad framework for the study of models of computation
and simulations between them, and shown that the ‘category of assemblies’ construction
and associated correspondence theorem generalize smoothly to this setting. We have also
seen that our 2-category of models possesses some non-trivial mathematical structure (most
notably a slightly relaxed form of exponentiation), as well as a number of well-behaved
subcategories corresponding to various properties of computational interest. Whilst our
investigation of this structure has been far from exhaustive, we believe that our results
sufficiently demonstrate the richness and fertility of our proposed framework.

We have also made a tentative start on showing how a wide range of existing computa-
tion models not previously studied in a realizability context might fit naturally within our
framework. In particular, in Section 3 we have seen how a very general class of ‘syntactic
models’ can be regarded as C-structures, and have presented one concrete and substantial
example of a simulation, embodying Milner’s translation from lazy λ-calculus to π-calculus.
However, a much broader and deeper investigation would be required to clarify the precise
extent of applicability of our framework.

Along the way, we have compared our framework with other possible candidates for a
general framework for computability models and simulations, such as those proposed by
Cockett and Hofstra [4, 5]. Some of the differences are rather technical in nature, and we
have not arrived at any definitive arguments in favour of one approach over another: indeed,

37

as regards finding the ‘right’ level of generality for these ideas it may be that we are still
far from the end of the story. Nevertheless, the broad picture that emerges is that our
category CST RUCT offers a more general setting than other current contenders (which can
be naturally viewed as subcategories of it) — with the notable exception of its ‘ordered’
counterpart (cf. [22, 7]) which would appear to be a straightforward structural enrichment
of our framework. It remains open whether this ordered version admits any additional
examples of computational interest.

Finally, we have shown how the higher order framework represented by the theory of
TPCAs can be naturally subsumed within a first order framework. Indeed, it now appears
that higher order structure plays a less vital role than we previously supposed, since the
same notion of (monoidal) simulation, and hence of equivalence, is equally appropriate in
both the first order and higher order settings. Combined with the observation that the class
of higher order C-structures does not enjoy particularly good closure properties, we are led
to the view that higher order models should really be regarded as nothing more than first
order models that happen to satisfy a certain completeness condition — a moral of some
significance for our general programme of mapping out computability notions.

6.2 Further work

It is likely that there is further categorical structure to be uncovered within CST RUCT .
Certainly there are other subcategories of interest that we have not discussed here. For ex-
ample, it is natural to look at C-structures that contain a pair of elements playing the role
of the booleans. The relevant boolean-respecting simulations between such structures corre-
spond to what are called decidable morphisms in [12].6 The subcategory of such simulations
would itself appear to have reasonable structure; moreover, it admits a cut-down version of
the near-exponential construction which in typical cases yields a much more tractable struc-
ture than the one in CST RUCT . (For instance, the near-exponential KK1

1 in the category of
boolean-respecting simulations is the one-element C-structure.) Similarly, one could restrict
to C-structures that contain a good representation of the natural numbers, and simulations
that respect them (these play an important role in [16]).

Beyond this, the main outstanding task is to populate our abstract framework with some
interesting examples (outside the domain of higher order C-structures, which has already
received significant attention), and to investigate more fully the extent of its applicability. It
seems to us that the realm of process calculi offers a suitable domain in which to begin such
an investigation, and our example involving the π-calculus makes a modest start on this. In
the first instance, we would expect that Milner’s translation from call-by-value λ-calculus
to π-calculus, as well as other translations in a similar spirit (see e.g. [19]), should furnish
further examples of simulations. However, one should also note that it is at present far from
clear whether the construction given in Example 3.4(ii) represents the ‘best’ way of building
a C-structure based on the π-calculus. Other possible constructions, and the relationships
between them, certainly deserve investigation.

One might also look at other process calculi, such as Milner’s CCS or Hoare’s CSP, and
possible translations between them. This would lead naturally to an investigation of the

6It is remarked in [23] that the name ‘decidable’ was not very well chosen — a point we are happy to
concede. Perhaps ‘boolean-respecting’ would be more appropriate.

38

equivalence or otherwise of different models of concurrent computation. In our view, either
of the following would represent an interesting advance:

• An example of two known process calculi or models that are not prima facie equivalent
but can be shown to yield equivalent C-structures.

• A proof of the inequivalence of two calculi or models that sheds some interesting light
on the essential difference in computational power between them.

If the study of process calculi from the point of view of CST RUCT proves a success, one
might then broaden the investigation to embrace other paradigms such as quantum compu-
tation or membrane computation.

One ulterior motive for this entire project is of course the search for natural ‘com-
putability notions’ underpinning existing models of computation. For instance, if several
superficially different computation models turned out to yield equivalent C-structures, this
might be seen as evident that the underlying notion of computability that these represented
was somehow a fundamental one. There is thus the hope that our general programme of
identifying and classifying natural computability notions (as exemplified in [15, 13, 16])
might eventually be extended to a much wider field.

Whether or not this ambitious goal turns out to realizable, we are hopeful that our theory
might play some role in bringing together a wide range of current approaches to modelling
computation under a single roof, thus enabling us to grasp how they all fit together. In
particular, our notion of simulation would seem to offer a promising way of talking about
how the views of a computational system at different ‘levels of abstraction’ are related to
one another. Already, the typed PCA framework has proved itself capable of offering such
a unifying perspective over a large tract of territory (see [16]); in the long run, we are
hopeful that this may be even more true for C-structures. In this way, one can envisage our
framework, or something like it, as playing a useful organizational role within theoretical
computer science, perhaps somewhat akin to that of category theory itself.

References

[1] S. Abramsky, The lazy lambda calculus. In D. Turner (ed.), Research Topics in Func-
tional Programming, Addison-Wesley, 65–116 (1989).

[2] S. Abramsky, Process realizability. In F.L. Bauer and R. Steinbrüggen (eds.), Founda-
tions of Secure Computation, IOS Press, 167–180 (2000).

[3] L. Birkedal and J. van Oosten, Relative and modified relative realizability. Annals of
Pure and Applied Logic 118, 115–132 (2002).

[4] J.R.B. Cockett and P.J.W. Hofstra, Introduction to Turing categories. Annals of Pure
and Applied Logic 156(2-3), 183–209 (2008).

[5] J.R.B. Cockett and P.J.W. Hofstra, Categorical simulations. Journal of Pure and Ap-
plied Algebra 214(10), 1835–1853 (2010).

[6] S. Feferman, A language and axioms for explicit mathematics. In Algebra and Logic,
Lecture Notes in Mathematics 450, Springer, 87–139 (1975).

39

[7] P.J.W. Hofstra, All realizability is relative. Math. Proc. Camb. Phil. Soc. 141, 239–264
(2006).

[8] N. Hoshino, Linear realizability. In Computer Science Logic 2007, Lecture Notes in
Mathematics 4646 of LNCS, Springer, 420–434 (2007).

[9] J.M.E. Hyland, The effective topos. In L.E.J. Brouwer Centenary Symposium, North-
Holland, 165–216 (1982).

[10] J.M.E. Hyland, First steps in synthetic domain theory. In Carboni et al, eds., Category
Theory, proceedings, Como 1990, Lecture Notes in Mathematics 1488, Springer, 131–
156 (1990).

[11] P. Lietz and T. Streicher, Impredicativity entails untypedness. Math. Struct. Comp.
Sci. 12, 335–347 (2002).

[12] J.R. Longley, Realizability Toposes and Language Semantics. PhD thesis, University of
Edinburgh, 1995.

[13] J.R. Longley, Matching typed and untyped realizability. In L. Birkedal et al (eds.), Pro-
ceedings of Workshop on Realizability, Trento. Electronic Notes in Theoretical Com-
puter Science 23(1), Elsevier (1999).

[14] J.R. Longley, Unifying typed and untyped realizability. Unpublished electronic note,
available from the author’s web page (1999).

[15] J.R. Longley, Notions of computability at higher types I. In R. Cori et al (eds.), Logic
Colloquium 2000, Lecture Notes in Logic 19, ASL, 32–142 (2005).

[16] J.R. Longley, On the ubiquity of certain total type structures. Math. Struct. Comp.
Sci. 17(5), 841–953 (2007).

[17] G. Longo and E. Moggi, Constructive natural deduction and its ‘ω-set’ interpretation.
Math. Struct. Comp. Sci. 1, 215–254 (1991).

[18] R. Milner, Functions as processes. Math. Struct. Comp. Sci. 2, 119–141 (1992).

[19] D. Sangiorgi, Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, University of Edinburgh, 1993.

[20] M. Schönfinkel, Über die Bausteine der Mathematischen Logik. Mathematische An-
nalen 92, 305–316 (1924). Translated in J. van Heijenoort, A Source Book in Mathe-
matical Logic, 1879–1931, Harvard University Press, 344–366 (1967).

[21] P. Taylor, The fixed point property in synthetic domain theory. In Proc. 6th Annual
Symposium on Logic in Computer Science, IEEE, 152–160 (1991).

[22] J. van Oosten, Extensional realizability. Annals of Pure and Applied Logic 84, 317–349
(1997).

[23] J. van Oosten, Realizability: An Introduction to its Categorical Side. Studies in Logic
and the Foundations of Mathematics 152, Elsevier, 2008.

40

