28 research outputs found

    Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b

    Get PDF
    The murine genome is known to have two keratin 6 (K6) genes, mouse K6 (MK6)a and MK6b. These genes display a complex expression pattern with constitutive expression in the epithelia of oral mucosa, hair follicles, and nail beds. We generated mice deficient for both genes through embryonic stem cell technology. The majority of MK6a/b−/− mice die of starvation within the first two weeks of life. This is due to a localized disintegration of the dorsal tongue epithelium, which results in the build up of a plaque of cell debris that severely impairs feeding. However, ∌25% of MK6a/b−/− mice survive to adulthood. Remarkably, the surviving MK6a/b−/− mice have normal hair and nails. To our surprise, we discovered MK6 staining both in the hair follicle and the nail bed of MK6a/b−/− mice, indicating the presence of a third MK6 gene. We cloned this previously unknown murine keratin gene and found it to be highly homologous to human K6hf, which is expressed in hair follicles. We therefore termed this gene MK6 hair follicle (MK6hf). The presence of MK6hf in the MK6a/b−/− follicles and nails offers an explanation for the absence of hair and nail defects in MK6a/b−/− animals

    Keratin 6 is not essential for mammary gland development

    Get PDF
    INTRODUCTION: Keratin 6 (K6) has previously been identified as a marker of early mammary gland development and has also been proposed to be a marker of mammary gland progenitor cells. However, the function of K6 in the mammary gland was not known, so we examined the expression pattern of the protein during both embryonic and postnatal mammary development, as well as the mammary gland phenotype of mice that were null for both K6a and K6b isoforms. METHOD: Immunostaining was performed to determine the expression pattern of K6a throughout mammary gland development, from the embryonic mammary bud to lactation. Double immunofluorescence was used to co-localize K6 with known markers of mammary gland development. Wild-type and K6ab-null mammary tissues were transplanted into the cleared fat pads of nude mice and the outgrowths were analyzed for morphology by whole-mount staining and for markers of mammary epithelium by immunostaining. Finally, progesterone receptor (PR) and bromodeoxyuridine co-localization was quantified by double immunofluorescence in wild-type and K6ab-null mammary outgrowths. RESULTS: Here we report that K6 is expressed earlier than described previously, by embryonic day 16.5. K6a is the predominant isoform expressed in the mammary gland, localized in the body cells and luminal epithelial cells but not in the cap cells or myoepithelial cells. Co-localization studies showed that most K6a-positive cells express steroid receptors but do not proliferate. When both the K6a and K6b genes are deleted, mammary gland development appears normal, with similar expression of most molecular markers examined in both the pubertal gland and the mature gland. Loss of K6a and K6b, however, leads to an increase in the number of steroid-receptor-positive cells, and increased co-localization of steroid receptor expression and proliferation was observed. CONCLUSION: Although K6a was not essential for mammary gland development, loss of both K6a and K6b resulted in an increase in PR-positive mammary epithelial cells and decreased proliferation after exposure to steroid hormones. There was also increased co-localization of PR and bromodeoxyuridine, suggesting alterations in patterning events important for normal lobuloalveolar development

    Disruption of Mitochondrial DNA Replication in Drosophila Increases Mitochondrial Fast Axonal Transport In Vivo

    Get PDF
    Mutations in mitochondrial DNA polymerase (pol Îł) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol Îł leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol Îł deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol Îłâˆ’Î± mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases

    Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial

    Get PDF
    Background: Glucagon-like peptide 1 receptor agonists differ in chemical structure, duration of action, and in their effects on clinical outcomes. The cardiovascular effects of once-weekly albiglutide in type 2 diabetes are unknown. We aimed to determine the safety and efficacy of albiglutide in preventing cardiovascular death, myocardial infarction, or stroke. Methods: We did a double-blind, randomised, placebo-controlled trial in 610 sites across 28 countries. We randomly assigned patients aged 40 years and older with type 2 diabetes and cardiovascular disease (at a 1:1 ratio) to groups that either received a subcutaneous injection of albiglutide (30–50 mg, based on glycaemic response and tolerability) or of a matched volume of placebo once a week, in addition to their standard care. Investigators used an interactive voice or web response system to obtain treatment assignment, and patients and all study investigators were masked to their treatment allocation. We hypothesised that albiglutide would be non-inferior to placebo for the primary outcome of the first occurrence of cardiovascular death, myocardial infarction, or stroke, which was assessed in the intention-to-treat population. If non-inferiority was confirmed by an upper limit of the 95% CI for a hazard ratio of less than 1·30, closed testing for superiority was prespecified. This study is registered with ClinicalTrials.gov, number NCT02465515. Findings: Patients were screened between July 1, 2015, and Nov 24, 2016. 10 793 patients were screened and 9463 participants were enrolled and randomly assigned to groups: 4731 patients were assigned to receive albiglutide and 4732 patients to receive placebo. On Nov 8, 2017, it was determined that 611 primary endpoints and a median follow-up of at least 1·5 years had accrued, and participants returned for a final visit and discontinuation from study treatment; the last patient visit was on March 12, 2018. These 9463 patients, the intention-to-treat population, were evaluated for a median duration of 1·6 years and were assessed for the primary outcome. The primary composite outcome occurred in 338 (7%) of 4731 patients at an incidence rate of 4·6 events per 100 person-years in the albiglutide group and in 428 (9%) of 4732 patients at an incidence rate of 5·9 events per 100 person-years in the placebo group (hazard ratio 0·78, 95% CI 0·68–0·90), which indicated that albiglutide was superior to placebo (p<0·0001 for non-inferiority; p=0·0006 for superiority). The incidence of acute pancreatitis (ten patients in the albiglutide group and seven patients in the placebo group), pancreatic cancer (six patients in the albiglutide group and five patients in the placebo group), medullary thyroid carcinoma (zero patients in both groups), and other serious adverse events did not differ between the two groups. There were three (<1%) deaths in the placebo group that were assessed by investigators, who were masked to study drug assignment, to be treatment-related and two (<1%) deaths in the albiglutide group. Interpretation: In patients with type 2 diabetes and cardiovascular disease, albiglutide was superior to placebo with respect to major adverse cardiovascular events. Evidence-based glucagon-like peptide 1 receptor agonists should therefore be considered as part of a comprehensive strategy to reduce the risk of cardiovascular events in patients with type 2 diabetes. Funding: GlaxoSmithKline

    Expression of MK6a dominant-negative and C-terminal mutant transgenes has distinct phenotypic consequences in the epidermis and hair-follicle

    No full text
    Mouse keratin 6a (MK6a) is constitutively expressed in a single cell layer of the outer root sheath (ORS) of hair follicles, but its synthesis can be induced in interfollicular epidermis including the basal cell layer in response to perturbing stimuli. A basally inducible human K6 (HK6) isoform has not been described, and it is not clear which of the known HK6 isoforms is expressed in the ORS. In this study we show that expression of a dominant-negative MK6a construct (Δ2B-P) in the interfollicular epidermis caused severe blistering and neonatal lethality, suggesting that mutations in a yet to be identified basally expressed HK6 isoform might result in a severe blistering phenotype. Surviving Δ2B-P animals showed transgene expression only in isolated epidermal cells and not in all cells of the ORS, but nevertheless developed severe alopecia. Expression of two different C-terminal mutant transgenes also caused alopecia while a third C-terminal mutant had no phenotypic conse- quences. Electron microscopy revealed that Δ2B-P expression resulted in the collapse of keratin filaments, while destruction of hair follicles in the two phenotypic C-terminal mutant lines occurred in the absence of filament abnormalities. The latter finding indicates that the innermost ORS cells are uniquely sensitive to expression of even slightly altered K6 proteins, suggesting that mutations affecting an HK6 isoform expressed in this cell layer could result in alopecia in humans as well

    Characterization of the mouse loricrin gene - Linkage with profilaggrin and the flaky tail and soft coat mutant loci on chromosome-3

    No full text
    Loricrin is the major component of a specialized structure, termed the cornified cell envelope, that is formed beneath the plasma membrane of stratified squamous epithelial cells and is coexpressed with profilaggrin in terminally differentiating epidermal keratinocytes. Full-length cDNAs for both mouse and human loricrin have been cloned and characterized, as has the human gene. Here we report the isolation and characterization of the mouse loricrin gene. The gene has a simple structure consisting of a single intron of 1091 bp within the 5' noncoding sequence and an uninterrupted open reading frame. Using PCR analyses of DNAs isolated from mouse x Chinese hamster somatic cell hybrids, we have mapped both the loricrin and the profilaggrin genes to chromosome 3. Genetic linkage analysis has shown that mouse loricrin and profilaggrin lie within 1.5 ± 1.1 centimorgans of each other. We have further shown that both genes map in the vicinity of the flaky tail (ft) and soft coat (soc) loci. These mouse mutants exhibit a number of changes in their integument, suggesting that abnormalities in these genes may contribute to the mutant phenotype
    corecore